
Quantum optimization and applied algorithms

1 Introduction

Quantum computing has advanced significantly in recent years, and while no
conclusive quantum advantage has been demonstrated at the time this document
has been written, real world applications appear to be on the horizon. There
are several potential areas for near term applications of quantum computing, of
which optimization is one promising area. For this chapter, we will investigate
how quantum tools can be used to solve classical optimization problems.

The first step in quantum optimization is to map the problem to a physical
model which can be encoded on a quantum computer. In practice, the most
common choice is the Ising model, which is known to be able to map all NP-
hard11 problems:

HIsing =

n∑
k=1

n∑
j=k+1

Jkjσ
z
kσ

z
j +

n∑
j=1

hjσ
z
j , (1)

where σz
j =

(⊗j−1
k=1 I2

)
⊗ σz ⊗

(⊗n
k=j+1 I2

)
where I2 =

(
1 0
0 1

)
is the

2x2 identity matrix and σz =

(
1 0
0 −1

)
. The ⊗ symbol indicates a tensor

product, which is reviewed in Appendix 1, along with the
⊗j−1

k=1 notation. The
coupling strengths Jkj form a matrix, and the field strengths hj form a vector
specifying a particular Ising model. Optimization problems can be encoded in
the matrix J and the vector h in ways which will be explained in section 33.

When J and h encode a problem, they encoded it in such a way that the
minimum energy with respect to HIsing is the best solution. When represented
as a matrix, HIsing is a 2n × 2n diagonal matrix where each diagonal entry
gives the energy of a classical bitstring from |00...0〉 to |11...1〉, but writing it
out this way is only possible for very small problems. To see why, consider a
100 bit optimization problem, which is actually still quite small compared to
what one typically encouters in the ‘real world’, the number of solutions will be
2100 ∼ 1030. In physics terms, this is more than the number of water molecules
in a large tanker truck full of water, counting the molecules in such a truck is
clearly not possible. Finding the solution to such an optimization problem by
just checking all possible solutions and taking the lowest is similarly impossible,
if you had a fast computer which could check one solution every nanosecond,
even if you started at the beginning of the universe, you would be less than

1
1000 th of the way to being done.

1Non-deterministic polynomial-time hard (often mistakenly referred to as ‘non-polynomial
hard’), the exact definition of this problem class is not important for this project, but this is
the ‘hardest’ class of conventional optimisation problems, and it is suspected (but not proven)
that no efficient algorithms exist for this class of problems.

1

2 The Quantum Adiabatic Algorithm

Clearly, there are better ways (i.e. algorithms) to solve optimization problems
than just checking every possibility. Also, in most cases you just need a good
solution, not the best solution. Coming up with clever classical ways to solve
optimization problems (e.g. genetic algorithms, swarm algorithms, and many
others) is a huge area of active research, but these problems could also poten-
tially be solved with the help of quantum mechanics. So far, all we have shown is
how to state an optimization problem as a Hamiltonian, we have not shown how
to add quantum effects. Consider the effect of adding single bit flip operations
to HIsing, to obtain the transverse field Ising model :

Htransverse Ising = −A(t)
∑
j

σx
j +B(t)HIsing (2)

where A and B are time dependent controls, and σx
j =

(⊗j−1
k=1 I2

)
⊗ σx ⊗(⊗n

k=j+1 I2

)
where σx =

(
0 1
1 0

)
is the usual Pauli matrix. If B = 0 and

A > 0, then the ground state |φ0(A > 0, B = 0)〉 of Eq. (22) will just be the
lowest energy state of each σx individually, in other words, |φ0(A > 0, B = 0)〉 =⊗n

j=1 |+〉 = 1√
2n

∑2n−1
j=0 |j〉 where |+〉 = 1√

2

(
1
1

)
. On the other hand, when

B > 0 and A = 0, then by definition |φ0(A = 0, B > 0)〉 will be the solution22 to
the optimization problem which has been encoded into J and h in Eq. (11).

Based on the statements in the previous paragraph, and some basic quantum
mechanics, there is a general quantum algorithm for optimization problems, as-
suming a physical system which can implement the transverse field Ising model
with sufficient controls is available. The adiabatic theorem of quantum mechan-
ics states that a quantum system initialized in the ground state of one Hamil-
tonian can remain in the ground state even if the Hamiltonian is changed. For
the adiabatic theorem to hold, the change must be slow enough, and some other
technical criteria—which transverse Ising systems always satisfy—are met. If
we start in |φ0(A > 0, B = 0)〉 =

⊗n
j=1 |+〉 with B = 0 and A > 0, and change

A and B slowly enough until we end with B > 0 and A = 0, we will find a
final state which is very similar to |φ0(A = 0, B > 0)〉, which is the solution to
our problem. This techniques is known as adiabatic quantum computing (AQC)
or the quantum adiabatic algorithm (QAA). Note that, while AQC definitely
works, if you change the Hamiltonian slowly enough, it won’t be useful in prac-
tice if it takes much longer than classical computers solving the same problem.
In practice we would be happy even if it doesn’t find the absolute best solution,
but finds a better solution than the classical algorithms, or if it finds one the
classical methods do find, but finds it much faster.

2if there is a tie for the best solution, then it could be a superposition state

2

a) b) c)
1

2
3

4 5

Figure 1: A graph with different sets of vertices coloured in black. a) A set of
vertices which are not independent. b) A set of vertices which are independent,
but is not the maximum independent set. c) The maximum independent set of
vertices for this graph. The numbering scheme used in Eq. (44) is shown in a).

3 Encoding Optimization problems into Hamil-
tonians

To explain how optimization problems can be mapped to the J and h terms
in Eq. (11), we will consider a simple problem, known as maximum independent
set. The easiest way to think of maximum independent set is to think of a graph
with vertices connected by edges, for example, the one shown in Fig. 11. The
goal of maximum33 independent set is to colour in as many vertices as possible
such that no two coloured vertices share an edge.

While maximum independent set may seem like a silly colouring problem, it
could actually come up in the real world. For instance, imagine a stock broker
wants to build a large diverse portfolio of stocks and the presence of an edge
represents pairs of stocks for which the values are likely to be highly correlated
(maybe two companies which produce the same product or rely on the same
resource). Finding the largest portfolio of uncorrelated stocks in this example
is exactly the maximum independent set problem.

To express the maximum independent set problem as an Ising model, we
first need to think how to encode the concept of an independent set. To do this,
first construct a two qubit Hamiltonian which penalizes (higher energy) the |11〉
state relative to the |00〉, |01〉, and |10〉 states. This constraint is achieved by

H2 independent = −σz ⊗ I2 − I2 ⊗ σz + σz ⊗ σz = −σz
1 − σz

2 + σz
1σ

z
2 , (3)

where the second form drops the identity operators for brevity. This Hamilto-
nian ensures the lowest energy state does not contain two ones.

Consider a graph defined by the upper triangular adjacency matrix M , such
that a 1 entry indicates an edge and a 0 entry indicates no edge, between

3Not to be confused with maximal independent set, which is not a hard problem.

3

corresponding vertices. If the qubits represent vertices, and state |1〉 indicates
the vertex is coloured, we can use terms like Eq. (33) to penalise adjacent vertices
that are both coloured. By defining J = M and hk = −

∑
j(Mkj + Mjk),

a Hamiltonian of the form of Eq. (11) will enforce independent sets. In other
words, when expressed as a bitstring, if the ones in a state form an independent
set on the graph defined by M , they will get one energy, but they will get a
higher energy if they do not. Try writing it out by hand for a three qubit
example, such as o–o–o, see figure 33 in Appendix 2.

Finally, to construct a maximum independent set Hamiltonian, rather than
just an independent set Hamiltonian, we need to give a lower energy to states
with more qubits in the 1 state. To do this, we now set hk = −(

∑
j Mkj +

Mjk) + κ (a greek kappa, not k) where 0 < κ < 1.
There are many more complicated ways of encoding optimization problems

into Ising Hamiltonians, but maximum independent set is one of the simplest,
and gives a flavour of how this process works.

4 Time-dependent Hamiltonian simulation

For the milestone, you will be simulating the quantum adiabatic algorithm solv-
ing a small instance of maximum independent set. To start with, consider the
graph depicted in Fig. 11, which is defined by the following adjacency matrix
(see Appendix 2)

M =

0 1 1 0 0
0 0 1 0 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

 . (4)

First, construct HIsing for this graph, and verify that the lowest energy state
is indeed the maximum independent set |10011〉 = |19〉 when written using the
convention that the first bit is the most significant. In vector form, this is a
column vector of length 25 with a one in the 19th position (18 zeros , 1, 13 zeros)

T

(see Appendix 2).
Once you have verified that you have constructed the classical problem

Hamiltonian correctly, the next step is to simulate an adiabatic algorithm solv-
ing the problem. To simulate the adiabatic algorithm, you have to simulate
evolution with a time dependent Hamiltonian. This time evolution can be writ-
ten as an infinite product of matrix exponentials:∫ tmax

0

Dt T exp{−iH(t)} = lim
q→∞

T
q∏

j=1

exp

{
−i tmax

q
H

(
j tmax

q

)}
(5)

where T indicates that the integral (or product) is time ordered44. If we are
willing to accept some numerical error, we can set q to be large but not strictly

4Note that the tmax
q

comes from the term Dt outside of the exponent, this fol-

lows from the general definition of the Feynman path integral
∫ tmax
0 DtT f(t) =

4

0.0 0.2 0.4 0.6 0.8 1.0
t

tmax

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

P
ro

ba
bi

lit
y

Figure 2: Success probability versus time for solving the maximum independent
set problem on the graph given in Fig. 11 and Eq. (44) for different total runtimes
tmax = 1 (blue), tmax = 2 (yellow), tmax = 5 (green), tmax = 10 (red), tmax = 100
(magenta). This plot was created using κ = 1

2 .

infinite, thus obtaining a discrete version of the continuous-time evolution in a
form convenient for numerical calculations. If we start in state |ψ(t = 0)〉, then
the state at time k tmax

q can be written as

∣∣∣∣ψ(t =
k tmax

q

)〉
≈ T

k∏
j=1

exp

{
−i tmax

q
H

(
j tmax

q

)}
|ψ(t = 0)〉 , (6)

where we use the convention that each subsequent term of the product is multi-
plied to the left of the previous terms. Mathematically, exponentiating a matrix
is well defined (at least for square matrices) through the power series expansion
of the exponential function. Fortunately, Python has a very efficient function
to exponentiate matrices: scipy.linalg.expm.

5 Milestone project

For the milestone you will simulate an adiabatic algorithm which solves the
maximum independent set problem on the graph defined by the adjacency ma-
trix given in Eq. (44). For this example, we will define A(t) = 1 − t

tmax
and

B(t) = t
tmax

where tmax is the total runtime of the algorithm. Plot the prob-
ability of ‘success’, i.e., the probability that the measured result will be the
maximum independent set, versus t

tmax
for several different values of tmax. This

plot should include both values of tmax for which the success probability is
barely changed from random guessing, values for which the success probability
is greater than 0.95, and at least one value where the probability is somewhere

limq→∞ T
∏q

j=1 f(jtmax
q

)
tmax

q .

5

in between. Find an acceptable value of q by trial and error simulating Eq. (66),
q does not have to scale with tmax. Fig. 22 depicts the success probabilities versus
time for different total runtimes, that you should aim to reproduce.

6 Milestone extensions

There are a wide variety of possible extensions which would be appropriate,
including many not listed here. All of the listed ones are are suitable for level 3
computer projects, but those which are likely to be more challenging are marked
with a †):

• Map other problems such as maximum 2 satisfiability using the mapping
from this experimental paper [11] and † more complicated problems such
as those described in [22].

• Apply sparse matrix techniques to simulate adiabatic quantum computing
on larger systems using scipy.sparse.linalg.expm multiply, possibly
also looking at problems beyond maximum independent set.

• Investigate the effect of different annealing schedules, in other words differ-
ent functional forms of A(t) and B(t) rather than just the linear example
used for the milestone, for example:

A(α, s′, t) =
1− t

tmax

α+ (1− α)
(

1− t
tmax

)
(1− s′)−1

B(α, s′, t) =
t

tmax

α+ (1− α) t
tmax

(s′)−1
, (7)

where 0 < s′ < 1 controls where the algorithm slows down (it translates
to a value of t

tmax
in the original A = t

tmax
, B = 1− t

tmax
parametrization)

and 0 < α ≤ 1 controls how much it slows down. How does this affect the
performance? Is it better to slow down when the energy gap between the
ground and first excited state is large, or when it is small?

• Reproduce some of the results seen in early proof-of-principle problems
for adiabatic quantum computing [33]. Note that some of these problems
are not formulated as Ising models.

• Explore QAOA (quantum approximate optimisation algorithm) rather
than adiabatic protocols. In QAOA, −

∑
j σ

x
j and HIsing are applied in an

alternating fashion rather than simultaneously see: [44, 55]

• Explore quantum walks on graphs [66](† possibly also including marked
states and decoherence [77]). Quantum walks have recently been considered
as a tool to solve optimization problems [88], but more results are known
for walks on graphs.

6

• † Write code to perform path integral quantum annealing (PIQA) [99],
which can be applied to much larger problems than the matrix simulation
methods used here. Potentially reproduce a version of the PIQA plots in
[1010].

Warning: the use of the terms adiabatic quantum computing versus quan-
tum annealing is not standardized in the literature, and different authors use
these terms differently. Read carefully, to understand what is actually being
done in a paper.

References

[1] S. Santra, G. Quiroz, G. Ver Steeg, and D. A. Lidar Max 2-SAT with up
to 108 qubits New Journal of Physics, 16, 4 pp. 045006 (2014).

[2] V. Choi Different Adiabatic Quantum Optimization Algorithms for the
NP-Complete Exact Cover and 3SAT Problems arXiv:1010.1221 (2010).

[3] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser Quantum Computation
by Adiabatic Evolution, arXiv:quant-ph/0001106 (2000).

[4] E. Farhi, J. Goldstone, S. Gutmann A Quantum Approximate Optimiza-
tion Algorithm, arXiv:1411.4028 (2014).

[5] S. Hadfield Quantum Algorithms for Scientific Computing and Approxi-
mate Optimization (PhD. thesis) arXiv:1805.03265 (2018).

[6] B. Tregenna, W. Flanagan, R. Maile, and V. Kendon Controlling discrete
quantum walks: coins and initial states New Journal of Physics, 5, pg. 83
(2003).

[7] V. Kendon Decoherence in quantum walks – a review Mathematical Struc-
tures in Computer Science, 17, 6 pp. 1169-1220, (2007).

[8] A. Callison, N. Chancellor, F. Mintert, V. Kendon Finding spin-glass
ground states using quantum walks arXiv:1903.05003 (2019).

[9] R. Martonak, G. E. Santoro, and E. Tosatti Quantum annealing by the
path-integral Monte Carlo method: the two-dimensional random Ising
model Phys. Rev. B 66 094203 (2002).

[10] N. Chancellor Modernizing quantum annealing using local searches New
Journal of Physics 19, 2 023024 (2017).

7

Appendix 1: A review of tensor products

Tensor products provide a powerful mathematical tool for a range of physics
models. The basic idea behind a tensor product is that it separates operations
occurring on different degrees of freedom of a physical system. Tensor prod-
ucts are required to complete the milestone. Note that the Python function
numpy.kron performs tensor products. Terminology in Python for matrix oper-
ations is not the same as usually used in physics, and you should always check
that it is actually doing what you want. In particular, matrix multiplication
using * is usually elementwise; you need to use something like numpy.dot to do
what we consider normal matrix multiplication.

While Python has functions to perform all the operations you need (use
them, they are very efficient implementations), it is necessary to understand
how they work, in order to check that your code is correct. Effectively, the
action of the tensor product a⊗ b is to replace each element of a, ajk with the
matrix ajk × b. Since each element is replaced by a matrix, the total size of the
resulting matrix is length(a)× length(b). Unlike standard matrix multiplication,
where the multiplication dimension needs to match, tensor products can be
performed between pairs of matrices (or vectors) of any size. Like all types of
multiplication, tensor products are associative, a⊗b⊗c = a⊗(b⊗c) = (a⊗b)⊗c.

As an example, consider the smallest non-trivial matrix tensor product,
which is a tensor product of two 2 × 2 matrices, which in this case can be
thought of as representing quantum mechanical operators on qubits (blue states
added as a visual aid) :

a⊗ b =

|0〉 |1〉()
〈0| a00 a01
〈1| a10 a11

⊗
|0〉 |1〉()

〈0| b00 b01
〈1| b10 b11

=

|00〉 |01〉 |10〉 |11〉

〈00| a00b00 a00b01 a01b00 a01b01
〈01| a00b10 a00b11 a01b10 a01b11
〈10| a10b00 a10b01 a11b00 a11b01
〈11| a10b10 a10b11 a11b10 a11b11

(8)

The action of the tensor product denoted by⊗ is to combine the spaces which the
operator acts on, such that the indices of the first matrix become the first digit
of the binary number representing the state and the second becomes the second.
In this way, a sort of composite representation can be constructed where the
state of two qubits can be written as a single state vector |αβ〉 = |α〉⊗|β〉. Each
degree of freedom can be addressed independently using the tensor product, for
instance, if we replace matrix a in Eq. (88) with a 2 × 2 identity matrix, the

8

resulting matrix
|00〉 |01〉 |10〉 |11〉

〈00| b00 b01 0 0
〈01| b10 b11 0 0
〈10| 0 0 b00 b01
〈11| 0 0 b10 b11

(9)

can only flip or apply phase differences to the second qubit, similarly, if b were
replaced by an identity the resulting matrix,

|00〉 |01〉 |10〉 |11〉

〈00| a00 0 a01 0
〈01| 0 a00 0 a01
〈10| a10 0 a11 0
〈11| 0 a10 0 a11

(10)

can only act on the first qubit.
This generalises for tensor products of more degrees of freedom. The matrices

quickly become unwieldy to write out explicitly, but computers can store and
manipulate very large matrices. An operation a on the jth qubit of an n qubit

system can be written aj =
(⊗j−1

k=1 I2

)
⊗ a⊗

(⊗n
k=j+1 I2

)
where I2 is a 2× 2

identity matrix and
⊗j−1

k=1 indicates repeated tensor products in the same way∏j−1
k=1 would represent repeated multiplication. In particular

⊗n
k=n−q+1 I2 =

I2 ⊗ I2...(total of q times)...⊗ I2 = I⊗q2 .
Any Hermitian operator of size 2n can be constructed from sums and prod-

ucts of Pauli operations on different sites σ
{x,y,z}
j plus the identity operation.

The operational meaning of σ
{x,y,z}
j is to perform a Pauli {x, y, z} operation

on the jth qubit while doing nothing (the identity) to the others, simultaneous

operators on qubits j and k where j 6= k can be represented as σ
{x,y,z}
j σ

{x,y,z}
k .

Since these Pauli operations are acting on different qubits they will commute,

i.e.,
[
σ
{x,y,z}
j , σ

{x,y,z}
k 6=j

]
= 0.

Coding tip: write a function (or three) to create σ
{x,y,z}
j once, and call it

in later functions, rather than trying to ‘hard code’ the creation of each term
from tensor products. Such functions can be written using less than 10 lines of
code, if written well.

Appendix 2: Graphs, adjacency matrices, and
Hamiltonians

Graphs are formal mathematical objects consisting of vertices (usually repre-
sented visually by circles) connected by edges (usually represented by line seg-
ments). Graphs can be drawn on a two dimensional plane by choosing (x, y)

9

coordinates for the vertices and drawing appropriate edges between them. This
positioning of the vertices is important for human understanding, but is not part
of the definition of the graph itself. Rearranging the vertices keeps the graph
the same. The power of graphs is that they allow an abstract representation of
the relationships between different entities, a family tree for instance is one type
of (directed) graph which provides information about ancestry and lineage. In
general graphs can have different types of edges (relationships between vertices)
or weights assigned to each edge, and can either be directed (relationship has
a direction, e.g., parent to child in family tree) or undirected. The maximum
independent set problem is defined on a very simple class of graphs where edges
are undirected and for which there is only one type of (unweighted) edge, ver-
tices can only be connected by 0 or 1 edges, and vertices are not allowed to
connect to themselves (no ‘self loops’).

While graphs provide a powerful tool for humans to visualize real problems
and systems, they are not a way of representing information which computers
can easily operate on directly. Fortunately, since a graph is defined by the
connections between vertices, rather than the positioning of those vertices, a
graph can efficiently be represented by a matrix, and matrices can be efficiently
manipulated by computers. Consider the simple graphs which are used to define
maximum independent sets. Each pair of vertices either share an edge or do not
share an edge, therefore the information contained in this kind of graph with
n vertices can be expressed as n (n − 1) binary variables (numbers which can
only be 0 or 1). In practice however, it is more convenient to organize these
variables into an n× n adjacency matrix, an array of numbers which has zeros
for everything below the diagonal and has ones in the (j, k > j) position if there
is an edge between two vertices and zero otherwise. Note that, depending on the
application, adjacency matrices may be defined with entries below the diagonal,
too, for traversing the edge from k to j. The upper triangular definition is
convenient for application to maximum independent set Hamiltonians, but we
could have used either convention.

To construct an adjacency matrix, one must assign labels in some order to
the vertices, as was done in Fig. 11 a). This ordering is arbitrary, but once chosen
must be used consistently. The matrix in Eq. (44) is reproduced below, with the
rows and columns labelled as a reference

M =

1 2 3 4 5

1 0 1 1 0 0
2 0 0 1 0 1
3 0 0 0 1 1
4 0 0 0 0 0
5 0 0 0 0 0

. (11)

As an example, if we look in the first row and second column, there is
a 1 entry in this matrix, and indeed, there is an edge between vertex 1 and
vertex 2 in Fig. 11. On the other hand, there is a zero in the first row and fourth

10

1 2 3
Figure 3: A simple graph with three vertices, coloured to show maximum
independent set and numbered to match Eq. (1212).

column, and there is indeed no edge shared between vertex 1 and vertex 4. From
this graph, the vector h and matrix J , which define the problem in the Ising
Hamiltonian, can be defined using Eq. (33). Mathematically, this Hamiltonian
can be expressed as a 2n × 2n matrix, although for large problems this matrix
will not be practical to construct simply because of how large it is. Already
for the maximum independent set problem defined in the main text, the matrix
will be 25 × 25 = 32× 32, rather large to write out explicitly on the page.

Instead, consider a three qubit problem defined by the graph depicted in
Fig. 33, which has the adjacency matrix

M ′ =

1 2 3()
1 0 1 0
2 0 0 1
3 0 0 0

(12)

. The Hamiltonian for the maximum independent set is therefore represented
by

J =

1 2 3()
1 0 1 0
2 0 0 1
3 0 0 0

, h =

()
1 −1 + κ
2 −2 + κ
3 −1 + κ

. (13)

11

The total 8× 8 problem Hamiltonian for this problem can be expressed as

Hproblem =

|0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉

|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

〈0| 〈000| −2 + 3κ 0 0 0 0 0 0 0
〈1| 〈001| 0 −2 + κ 0 0 0 0 0 0
〈2| 〈010| 0 0 −2 + κ 0 0 0 0 0
〈3| 〈011| 0 0 0 2− κ 0 0 0 0
〈4| 〈100| 0 0 0 0 −2 + κ 0 0 0
〈5| 〈101| 0 0 0 0 0 −2− κ 0 0
〈6| 〈110| 0 0 0 0 0 0 2− κ 0
〈7| 〈111| 0 0 0 0 0 0 0 6− 3κ

.

(14)

Note that it is diagonal, because it has been constructed entirely from σz op-
erators plus identity terms. The σx terms in the transverse field in Eq. (22)
will appear as off-diagonal entries (see below). The bras and kets labelling the
rows and columns depict two different ways of expressing the states, either by
listing the states of each of the three qubits (blue), or by converting this state
to a decimal number (red). For visual clarity, the lowest energy eigenvalue has
been coloured magenta (recall that 0 < κ < 1). By examining the problem
Hamiltonian, we can observe that the maximum independent set is the state
|101〉 = |5〉 = (0, 0, 0, 0, 1, 0, 0)T , where the last expression is the state expressed
as a vector. Finally, the total Hamiltonian for the adiabatic evolution Hamilto-
nian can be constructed, setting κ = 1

2 and plugging into Eq. (22), we obtain:

H(t)total =

|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

〈000| − 1
2B(t) −A(t) −A(t) 0 −A(t) 0 0 0

〈001| −A(t) − 3
2B(t) 0 −A(t) 0 −A(t) 0 0

〈010| −A(t) 0 − 3
2B(t) −A(t) 0 0 −A(t) 0

〈011| 0 −A(t) −A(t) 3
2B(t) 0 0 0 −A(t)

〈100| −A(t) 0 0 0 − 3
2B(t) −A(t) −A(t) 0

〈101| 0 −A(t) 0 0 −A(t) − 5
2B(t) 0 −A(t)

〈110| 0 0 −A(t) 0 −A(t) 0 3
2B(t) −A(t)

〈111| 0 0 0 −A(t) 0 −A(t) −A(t) 9
2B(t)

.

(15)

12

	Introduction
	The Quantum Adiabatic Algorithm
	Encoding Optimization problems into Hamiltonians
	Time-dependent Hamiltonian simulation
	Milestone project
	Milestone extensions

