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Structure of talk

Setting the scene:

I What is quantum mechanics (very briefly)

I Quantum computing in 1996 (when this was shown)

I P versus NP

Unstructured search problem:

I Best classical algorithm

I Grover’s quantum search

Limitations and applications:

I Issues with using directly

I Hybrid quantum/classical algorithms

Wrap-up, questions, and discussions



Quantum mechanics

Image: public domain taken from wikimedia commons

I won’t teach you all of quantum mechanics in 20 minutes, but...
there are some key facts you should know

I A linear theory → (possibly very big) matrices and vectors

I Vectors of probability amplitudes → proportional to square
root of probability

I Unlike probability, amplitudes add or subtract, not just add?

?They are generally complex numbers, involving i =
√
−1, but that isn’t

important for this talk



Travelling salesperson

Prototypical example of a “hard” optimisation problem

Image: XKCD comic 399 created by Randall Monroe https://xkcd.com CC attribution non-commercial (slightly

modified to remove swearing)

I Our salesperson has to visit n cities, but can do so in any order

I n! (valid) routes, clever algorithms can do better

I Time to find the exact solution scales (exponentially) badly
for all known algorithms



Quantum computing today
Core idea:
Build a better computer by taking advantage of quantum mechanics

Image: wikimedia commons CC share alike attribution, uploaded by IBM research

I Devices exist now, lots of room for improvement, but very
exciting

I We can do some experiments

... but how did we get here?



Quantum Computing in 1996

Image: copyright BBC, used under fair use

I No hope of building a device anytime soon

I Some ideas of how it might work, but is it worth it?

Any justification for building one had to be purely theoretical!

Need to show advantage for something important



Proving quantum is better for travelling salesperson?

Image: public domain taken from wikimedia commons

Any justification has to be purely theoretical!

I Need to know what the best possible classical algorithm is

I Show quantum can do better

I Oops, we don’t know what the best classical is
I Hard (exponential scaling) classical optimisation problems not

proven to exist

I This is a deep question in CS: P
?
= NP



A problem where we do know the best classical can do

Unstructured search problem:

I We can check answers with an “oracle” either tells us “right”
or “wrong”, but no info on how close

I No clever algorithmic tricks, either guess or check all
I Both approaches scale like N, the number of possible solutions

we could check

Quantum search in a time proportional to Np, where p < 1?



Quantum search conceptually

Recall: quantum amplitudes scale as the square root of probability

I The amplitude of the solution 1√
N

rather than 1
N for

probability

I Use interference (the way amplitudes can cancel) in a clever
way to exploit this fact

I End up in the solution with a high probability after a number
of steps proportional to

√
N



Quantum search mathematically

Key trick: high degree of symmetry means we can reduce to a two
dimensional subspace

I
(

0
1

)
corresponds to the solution

I
(

1
0

)
corresponds to an unweighted sum of every state

except the solution

I Operations consist of 2x2 matrices operating in this space



Diffusion: a quantum version of random guessing

I Amplitude goes from all states to all other states

I Total probability (sum of squares of amplitudes) must always
sum to 1

I Can be compiled to quantum “‘gates”, can explain during
questions if interest

Written in our two-dimensional subspace, diffusion operation be-
comes

D =

(
−1 + 2

N
−2
√
N−1
N

−2
√
N−1
N 1− 2

N

)
Minus signs are needed to guarantee probabilities add to 1



Applying diffusion to a quantum state

I Consider we start in a general state

(
a
b

)
, then applying

diffusion gives us:(
−1 + 2

N
−2
√
N−1
N

−2
√
N−1
N 1− 2

N

)(
a
b

)
=

(
a( 2

N − 1)− 2b
√
N−1
N

b(1− 2
N )− 2a

√
N−1
N

)

I Exercise: show that if a =
√

N−1
N and b =

√
1
N , than

D

(
a
b

)
= −

(
a
b

)

For N � 1 this is approximately

(
−a− b 2√

N

b − a 2√
N

)
I Addition in complement of the solution, subtraction in solution



Adding a way to tell which state is the solution

I To make our guessing useful, we need to do something to tell
us when we got the answer “right”

I We ask our “oracle” to multiply by −1 if we have found the
solution, we call this the “marking” operation

m =

(
1 0
0 −1

)

Applying both

Dm

(
a
b

)
=

(
a( 2

N − 1) + b 2
√
N−1
N

b( 2
N − 1)− a 2

√
N−1
N

)
≈

(
−a + b 2√

N

−b − a 2√
N

)

This operation adds to the solution and subtracts elsewhere



The bottom line
I Every application of Dm increases the amplitude to be in the

solution by an amount proportional to 1√
N

I Therefore applying this operation a number of times
proportional to

√
N gives us an amplitude of order 1

Classical computers are very good at multiplying 2x2 matrices (and
even were in 1996), here are some examples?
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?it is a good exercise to reproduce these, hint probability is the (absolute
value of) amplitude squared



Stepping back

We just showed that a quantum computer can search faster than a
classical computer ever could?...

What does this mean in practice?

I Motivation that they might be fundamentally better at tasks
like solving travelling salesperson

I Might even be directly useful as part of a bigger algorithm

Image: public domain taken from wikimedia commons

?The algorithm we demonstrated is called “Grover’s algorithm”



Probably don’t want to just apply directly

Image: XKCD comic 399 created by Randall Monroe https://xkcd.com CC attribution non-commercial (slightly

modified to remove swearing)

I Often classical algorithms can scale better than
√
N for real

(structured) problems

I The dynamical programming algorithm given in this example
scales better than

√
n! for example?

I ...also the issue of how to know if a route is the shortest

?The algorithm being referenced here in particular (Held-Karp) does have
some unfortunate scaling in memory usage, but the larger point still stands



Use within classical algorithms

I Find classical algorithm with stages which look like
unstructured search and replace with quantum search

I Example Montanero, Phys. Rev. Research 2, 013056 (2020):
I Classical branch-and-bound solved their problem? in a time

which scales as 20.451n, where n is the number of variables
I Showed that the quantum version would scale in 20.226n

I Took a classical algorithm which was already faster than
unstructured search, and got an additional speedup

?Not travelling salesperson but a different hard optimisation problem



The importance of encoding
Classical computers are already very good...

I Only worth using quantum if we are searching over a large
number of configurations
I A laptop can easily solve an optimisation problem where

N ≈ 1, 000, 000 just by checking every possibility

I Need an efficient encoding, physical size of device scales as
n ∝ log(N)

I Usual approach is to encode into quantum bits, N = 2n, but
other ways exist

I Algorithm could be encoded into a quantum circuit, on
quantum bits, but that is beyond the scope of this lecture



The big picture

The theory presented here motivated the use of quantum computers
for one important type of problem

Other key early factors:

I Quantum error correction was shown to be theoretically
feasible → hardware doesn’t have to be “perfect”

I Quantum computers could factor numbers very fast (Shor’s
algorithm)

I Simulating quantum systems is very hard classically, quantum
computers could be good for simulating quantum systems



Summary and key points

I Early justification for quantum computers had to be purely
theoretical

I Unstructured searching provided a way to do this

I Quantum amplitudes scale as the square root of probability

I Unlike probabilities they can be positive or negative (or
involve

√
−1)

I Controlling how these add or cancel is at the heart of
quantum algorithms

I The search algorithm we showed is not useful directly but...

I It can be used within other algorithms

I Quantum computing is only useful with a good encoding


