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1 Overview: what is in this lecture

� (non-)stoquasticity and path integral quantum Monte Carlo

– Perron-Frobenius theorem and the PageRank algorithm (original al-
gorithm which powered Google search)

– Where non-stoquastic Hamiltonians arise: Electronic systems

– The sign problem and path integral quantum Monte-Carlo

– QMC does not simulate noisy QA (a common misconception)

� Reverse annealing and biased search

– Core idea, use information from classical algorithms or previous runs
to help the anneal

– Coherent reverse annealing “Mexican hat” protocol

– Dissipation driven reverse annealing (D-Wave)

– Biased drivers

� Error correction

– Naive translation of code to Hamiltonian: self correcting codes

– Why this isn’t practical

– Brief overview of what has been tried

� Shortcuts to adibaticity
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– Basic concept, counteract terms which take you out of the ground
state

– Theoretical version, success probability 1 with tiny runtimes

2 (non-)stoquasticity

� Stoquastic11 Hamiltonians → all off diagonal elements are negative (or
zero) (or can be made negative or zero)

� Perron-Frobenius theorem: if all off-diagonal elements are negative than
unique ground state with all positive weights

� Extension: if negative or zero than GS can be degenerate, but there is a
state with all positive weights in the manifold

� Intuition, adding a phase can only increase energy if all are negative

� Application in classical computing: PageRank algorithm [11] edges repre-
sented probability to link to page, higher support in (all positive) ground
state means higher rank

� Path integral quantum Monte Carlo: can find thermal state of a quantum
system in one higher dimension:

– Sketch of concept, want to approximate Tr(e−
H
T ) Trotterize∑

ψ1,ψ2...ψm

Tr(e−
H

mT |ψ1〉〈ψ1|e−
H

mT |ψ2〉〈ψ2|....|ψm〉〈ψm|) (1)

– Diagonal parts of H become interactions within a classical “copy”,
off diagonal parts become couplings between copies

– Thermal distribution of this classical Hamiltonian can be found with
classical Monte Carlo

– Can be made mathematically rigorous → in the limit m→∞, with
enough equilibrated samples the distribution is the same as the real
quantum Hamiltonian

� Seems too good to be true, there are some “catches”:

1. No guarantees on how long it takes to reach thermal equilibrium,
could take lifetime of the universe

2. For non-stoquastic Hamiltonians samples will all have phases, phases
will mostly cancel and exponentially many samples may be required
→ sign problem

1nb: not at typo, related but different to stochastic
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� Non-stoquastic Hamitonians tend to be hard in practice for QMC at low
T

� This has lead to the misconception that non-stoquastic=hard therefore
stoquastic=easy

� If all stoquastic were easy at all temperatures, than we could show that
P = NP by using QMC for annealing like protocols (see [22])

� Another persistent myth, highly dissipative stoquastic (think D-Wave)
quantum annealers are no more powerful than QMC annealing

– Theoretical counterexamples [33] (easier to understand arguments can
be found in [44])

– Very recent experimental evidence than annealer does in fact scale
better [55]

� Non-stoquastic may still be useful, for instance needed to simulate elec-
tronic systems; electrons are fundamentally non-stoquastic due to ex-
change statistics

� Path integral quantum Monte-Carlo can still be interesting as a quantum
inspired algorithm even if not as good as true quantum

3 Reverse annealing and biased searches

� Core idea: don’t start “from zero”, either start from solution from classical
algorithm, or use as a subroutine in a hybrid quantum-classical algorithm

� One way to see how this is a good idea: quantum annealing is the quan-
tum analogue of simulated annealing, but simulated annealing has been
superseded by algorithms like parallel tempering, can win with parallel
tempering analogues in annealing [66]

� Need a way to bias the search toward a desired solution, several ways to
do this

1. Have three Hamiltonians, unbiased starting Hamiltonian, bias Hamil-
tonian, and problem Hamiltonian, bias turns on in the middle [77]
coherent reverse annealing

2. Program starting state and use dissipation in dissipative annealers
(implemented on D-Wave systems) dissipative reverse annealing [66]

3. Start in a ground state of a biased search Hamiltonian [88, 99]

� Method 1 has been shown to change first order phase transitions to second
order (allowing annealing to be much faster) [1010]
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� Method 2 is heavily used in quantum simulation on D-Wave devices (in-
cluding in [55]) and has also been used to construct hybrid algorithms
(example: [1111])

� Method 3 was proposed by [88] in 2013, but only really popularized recently
([99]), not as much known, but it is the only of the three compatible with
the energy arguments in [1212]→ likely to be very useful in diabatic settings

4 Hamiltonian based error correction

� Reminder: gate model error correction → measure stabilizer degrees of
freedom, allow errors to be detected without disturbing quantum infor-
mation, for a good introduction see [1313]

� Gate model error correction requires errors to be actively corrected, but
can be made fully fault tolerant

� Hamiltonian version, replace stabilizer measurements with Hamiltonian
terms→ errors raise energy, and dissipation lowers energy while correcting
errors [1414]

� Only works if Hamiltonian is “thermodynamically stable”, in other words
energetic factors outweigh entropic ones [1515]

� Normal 2D surface code is not thermodynamically stable, defects can move
with no additional energy cost 4D version is stable

� Require high weight (i.e. involving many terms ZiZj ...Zk) operators so
full error correction is not currently practical

� Some proof-of-concept demonstrations of error suppression on D-Wave
devices [1616]

� Dynamical decoupling, another technique where errors are removed by
cancelling qubit rotations, not going to discuss more here, but more can
be found here: [1717]

5 Shortcuts to adiabaticity

� Key concept: imagine evolution in instantaneous energy eigenbasis of
Hamiltonian

� Changing Hamiltonian over time create off diagonal elements in this basis

� What if we can create a Hamiltonian which cancels these elements, in
principle we can stay in the ground state without being adiabatic

HCD =
∑
m

∑
n

|n(t)〉〈n(t)|Ḣ|m(t)〉〈m(t)|
En − Em

(2)
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� Review can be found at [1818]

� Caveats:

– Hamiltonians will have to be of high weight to fully cancel the off
diagonal elements

– The faster the time evolution the stronger these Hamiltonians need
to be scale as 1

tf

– In general not possible to know the exact form for the whole evolution
without knowing the answer

� In practice try to make a low order approximation see for example [1919]

6 Summary and important points

� Myth that stoquastic AQC can be simulated by quantum Monte-Carlo

� Can only simulate thermal distribution and may take a very long time to
get there

� Path integral quantum Monte-Carlo can be an interesting quantum in-
spired algorithm

� Reverse annealing and related techniques are a powerful tools for building
hybrid algorithm

� Self correcting Hamiltonians can exist in theory, but involve terms which
are not practical with current technology

� Error suppression has been demonstrated though

� Shortcuts to adiabaticity can potentially help as well, but are impractical
to implement exactly
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