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1 Overview: what is in this lecture

e (non-)stoquasticity and path integral quantum Monte Carlo
— Perron-Frobenius theorem and the PageRank algorithm (original al-
gorithm which powered Google search)
— Where non-stoquastic Hamiltonians arise: Electronic systems
— The sign problem and path integral quantum Monte-Carlo
— QMC does not simulate noisy QA (a common misconception)
e Reverse annealing and biased search
— Core idea, use information from classical algorithms or previous runs
to help the anneal
— Coherent reverse annealing “Mexican hat” protocol
— Dissipation driven reverse annealing (D-Wave)

Biased drivers

e Error correction

— Naive translation of code to Hamiltonian: self correcting codes
— Why this isn’t practical

— Brief overview of what has been tried

e Shortcuts to adibaticity
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— Basic concept, counteract terms which take you out of the ground
state

— Theoretical version, success probability 1 with tiny runtimes

(non-)stoquasticity

Stoquastic! Hamiltonians — all off diagonal elements are negative (or
zero) (or can be made negative or zero)

Perron-Frobenius theorem: if all off-diagonal elements are negative than
unique ground state with all positive weights

Extension: if negative or zero than GS can be degenerate, but there is a
state with all positive weights in the manifold

Intuition, adding a phase can only increase energy if all are negative

Application in classical computing: PageRank algorithm [1] edges repre-
sented probability to link to page, higher support in (all positive) ground
state means higher rank

Path integral quantum Monte Carlo: can find thermal state of a quantum
system in one higher dimension:

Sketch of concept, want to approximate Tr(e’%) Trotterize
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Diagonal parts of H become interactions within a classical “copy”,
off diagonal parts become couplings between copies

— Thermal distribution of this classical Hamiltonian can be found with
classical Monte Carlo

Can be made mathematically rigorous — in the limit m — oo, with
enough equilibrated samples the distribution is the same as the real
quantum Hamiltonian

Seems too good to be true, there are some “catches”:
1. No guarantees on how long it takes to reach thermal equilibrium,

could take lifetime of the universe

2. For non-stoquastic Hamiltonians samples will all have phases, phases
will mostly cancel and exponentially many samples may be required
— sign problem

Inb: not at typo, related but different to stochastic



Non-stoquastic Hamitonians tend to be hard in practice for QMC at low
T

This has lead to the misconception that non-stoquastic=hard therefore
stoquastic=easy

If all stoquastic were easy at all temperatures, than we could show that
P = NP by using QMC for annealing like protocols (see [2])

Another persistent myth, highly dissipative stoquastic (think D-Wave)
quantum annealers are no more powerful than QMC annealing

— Theoretical counterexamples [3] (easier to understand arguments can
be found in [4])

— Very recent experimental evidence than annealer does in fact scale
better [5]

Non-stoquastic may still be useful, for instance needed to simulate elec-
tronic systems; electrons are fundamentally non-stoquastic due to ex-
change statistics

Path integral quantum Monte-Carlo can still be interesting as a quantum
inspired algorithm even if not as good as true quantum

3 Reverse annealing and biased searches

e Coreidea: don’t start “from zero”, either start from solution from classical
algorithm, or use as a subroutine in a hybrid quantum-classical algorithm

e One way to see how this is a good idea: quantum annealing is the quan-
tum analogue of simulated annealing, but simulated annealing has been
superseded by algorithms like parallel tempering, can win with parallel
tempering analogues in annealing [6]

e Need a way to bias the search toward a desired solution, several ways to
do this

1. Have three Hamiltonians, unbiased starting Hamiltonian, bias Hamil-
tonian, and problem Hamiltonian, bias turns on in the middle [7]
coherent reverse annealing

2. Program starting state and use dissipation in dissipative annealers
(implemented on D-Wave systems) dissipative reverse annealing [6]

3. Start in a ground state of a biased search Hamiltonian [8, 9]

e Method 1 has been shown to change first order phase transitions to second
order (allowing annealing to be much faster) [10]
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Method 2 is heavily used in quantum simulation on D-Wave devices (in-
cluding in [5]) and has also been used to construct hybrid algorithms
(example: [11])

Method 3 was proposed by [8] in 2013, but only really popularized recently
([9]), not as much known, but it is the only of the three compatible with
the energy arguments in [12] — likely to be very useful in diabatic settings

Hamiltonian based error correction

Reminder: gate model error correction — measure stabilizer degrees of
freedom, allow errors to be detected without disturbing quantum infor-
mation, for a good introduction see [13]

Gate model error correction requires errors to be actively corrected, but
can be made fully fault tolerant

Hamiltonian version, replace stabilizer measurements with Hamiltonian
terms — errors raise energy, and dissipation lowers energy while correcting
errors [14]

Only works if Hamiltonian is “thermodynamically stable”, in other words
energetic factors outweigh entropic ones [15]

Normal 2D surface code is not thermodynamically stable, defects can move
with no additional energy cost 4D version is stable

Require high weight (i.e. involving many terms Z;Z;...Zy) operators so
full error correction is not currently practical

Some proof-of-concept demonstrations of error suppression on D-Wave
devices [16]

Dynamical decoupling, another technique where errors are removed by
cancelling qubit rotations, not going to discuss more here, but more can
be found here: [17]

Shortcuts to adiabaticity

Key concept: imagine evolution in instantaneous energy eigenbasis of
Hamiltonian

Changing Hamiltonian over time create off diagonal elements in this basis

What if we can create a Hamiltonian which cancels these elements, in
principle we can stay in the ground state without being adiabatic
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Review can be found at [18§]
Caveats:

— Hamiltonians will have to be of high weight to fully cancel the off
diagonal elements

— The faster the time evolution the stronger these Hamiltonians need

to be scale as %

— In general not possible to know the exact form for the whole evolution
without knowing the answer

In practice try to make a low order approximation see for example [19]

6 Summary and important points

Myth that stoquastic AQC can be simulated by quantum Monte-Carlo

Can only simulate thermal distribution and may take a very long time to
get there

Path integral quantum Monte-Carlo can be an interesting quantum in-
spired algorithm

Reverse annealing and related techniques are a powerful tools for building
hybrid algorithm

Self correcting Hamiltonians can exist in theory, but involve terms which
are not practical with current technology

Error suppression has been demonstrated though

Shortcuts to adiabaticity can potentially help as well, but are impractical
to implement exactly
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