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Overview: what is in this lecture

What it does (and more importantly doesn’t) mean for a problem to be
NP-Hard, with cautionary example

— Funtime bonus! how to show Super Mario is (NP)-Hard

The relationship between Ising and QUBO formalisms and why they can
be used almost interchangeably

Mapping more connected graphs to less connected: minor embedding and
parity encoding

Mapping higher order interactions

Mapping higher than binary variables (one hot, binary encoding, and do-
main wall)

NP-hardness

NP stands for non-deterministic polynomial (not “non-polynomial”!): this
means that a “maximally lucky” Monte-Carlo type algorithm' could solve

Ltechnically any algorithm run on a non-deterministic Turning machine which gets maxi-

mally lucky


http://nicholas-chancellor.me/outreach_teaching_docs.html
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the problem in polynomial time, even if every bit is wrong this only takes
n bit flips

e P?=NP, can a non-cheating i.e. not maximally lucky algorithm solve these
in polynomial time, strongly suspected but not proven that P = NP

e Can be mapped into each other in polynomial time/space, showing that
one can be solved in poly time shows that all can

e There are harder classes of problems for example #P hard — how many
solutions does a problem have, even “maximally lucky” algorithms cannot
solve these in polynomial time because there may be exponentially many
solutions

3 Using NP-hard problems to benchmark solvers

e Finding ground state of Ising problem D-Wave chimera graph is NP-
hard (easy to show actually, just max-cut mapping+how to map arbitrary
graphs, which I will explain later)

e Take random Ising instances and use them for benchmarking (these are
hard problems right? the problem class has “hard” right in the name)
[1, 2]

e Actually no, [3] showed using spin glass theory that these problems are
easy to solve using simulated annealing type algorithms (no finite T spin
glass transition)

e What is going on? did the authors of [3] accidentally show that P=NP?

— No, they showed that that these problems are typically easy, NP-
hardness is about what can be mapped and is therefore a worst case
statement?

4 More on NP-hardness

e Many other problems are actually NP-hard but typical cases are (at least
computationally) easy, my favourite example, playing Super Mario (not
joking, see [4] for a mapping of 3-SAT to Super Mario and other classic
games)

e How it works (slightly simplified from the paper but same idea):

1. For each variable a; you can choose one pipe True or False, for true
you get to a pipe for all clauses which involve a and if you chose false
you get one for all involving —a

2] am not trying to belittle the authors of (1, 2], they do amazing work and are leaders in
the field, I would have probably made the same mistake in their shoes



2. These pipes go underneath boxes where you can release invincibility
stars

3. Then you go where the stars are, there is fire, if at least one star you
can make it through, if not, too bad

4. Can only beat the level if you find a satisfying arrangement!

e In all seriousness, [4] is a really accessible way to learn the basic of how
these hardness proofs work

e So what do you want for benchmarking? wuniform hardness, much more
difficult to prove, doesn’t just require you to show mapping

e Final note: even though these problems all map to each other with poly-
nomial overhead, not all polynomial overheads are equal (big difference
in practice between n? and n® for example) — finding good mappings is
important

Mapping problems to quantum annealers

e What you have (hardware) — Ising model with two body interactions and
not all connections allowed

Higing = Z Jij Z; Z; + Z hiZ; (1)

1JEX %
e What real problems often have

— Usually not expressed as Ising models

— Unlikely to match the graph of your hardware (unless you design
special hardware to match the structure)

— Interactions involving more than two variables (think 3-SAT)

— Variables may be higher than binary

e In principle all of these issues are solvable assuming your hardware is big
enough and has enough dynamic range (range of values the h’s and J’s
can take)

First mapping QUBO to Ising

e Physicists love Ising models, but no-one else cares

e Optimisation problems often represented as QUBO’s (Quadratic Uncon-
strained Binary Optimisation)

E=3"+Qx*7¥ (2)



— &; € {0,1} the B in QUBO (U comes from the fact that any value is
allowed)

— (@ involves both diagonal and off diagonal elements 2=quadratic=the

Q in QUBO
— Goal is to minimize F (the O in QUBO)

How to map this to an Ising model:
e r;x; = x; up to irrevelvant constant offset, can transform to —%Zﬁ

e z;x; for i # j, a bit trickier, because z;z; is only non-zero if both variables
are 1 need both single and two body terms
1. —Z; — Z; will give |11) a higher energy than |10) or [01) but will give
|00) an even lower energy

2. Z;Z; can be used to offset |00) so that |10), |01), and |00) all have
the same energy

3. —Z;— Z; + Z;Z; will give —1 for |10), |01), and |00) and +3 for |11)
— normalize by dividing by 4

4. End up with %(—Zi —Z;+Z;Z;) (note this also works for diagonal
elements if we recall that Z;Z; gives the identity

e Could have also taken a shortcut x; — %(1 — Z;) and factored out and
ignored constants

How to map to hardware graph

e Minor embedding: take a graph minor (a connected subcomponent of a
graph), and couple together with strong ferromagnetic coupling

Y Y 2z 3)

chains (¢,jEchain)

e Aslong as A is “big enough” I can force all qubits in chain to take same
value [5]

e Act like one variable

¢ Graph needs to be non-planar (needs some crossings), but can have highly
local connectivity

¢ Quasi-planar graphs (local connectivity in small region) can embed fully
connected graphs but require n? variables [6]

SRecall (1] Z; |1) = —1



e Alternative approach: parity mapping, each physical qubit corresponds
to a coupler in a fully connected graph, four body terms enforce logical
consistency (all neighbouring qubits see same value)

e Parity schemes, such as the LHZ (Lechner-Hauke-Zoller) scheme [7, §],
flipping a single variable, need to keep flipping until all constraints are
satisfied

e Not clear which is better, LHZ allows for more clever decoding, but nu-
merics show minor embedding performs better in some practical cases [9]

8 More than 2 body terms

e Core idea: add constrained auxilliary qubits and penalize those as well

e Simple example: Z;Z;Z;,, add a single auxilliary qubit, a, and constrain
with —\N(Z;Z, + Z;Z4 + Z1Z,,), for large X this constrains a to take a
majority vote of the three qubits

e Problem: without adding more penalties, the |000) state gets a —3\ con-
tribution to the energy, while |011) only gets —A\

e Solution: add %(ZiZj +Z;Zy+ Z; Zy), now we get —%)\ contribution from
both, everything else works out by symmetry (try it if you don’t believe
me)

e Now let’s actually make a Z;Z;Z, penalizing the majority vote —Z, al-
most does the right thing, except for it gives |111) and |000) the wrong
energies, fix by adding single body terms after some algebra we find

1
Zi+ Z; + Z + 270 + A (2(ZZ-ZJ- V Z; 2k + ZiZh) — ZiZo — 7 %0 — ZkZa>
(4)

e 7,77 terms can be chained together to make arbitrary multi-body terms
(Z:Z; ZvZ) — Z;Z; Zo+ Zo Zi Zy) [10] alternative trick based on symmetry
in [11]

e Many other ways to do this I am not going to talk about, this is just to
give you a flavour of how this works
9 Higher-than-binary variables

e Variables which represent more than two mutually exclusive possibilities,
but still only interact pairwise discrete quadratic modes (DQMs)
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Examples: scheduling (where individual events may use the same resource
and therefore conflict), colouring (where adjacent nodes can’t be the same
colour)

Most efficient way to do this in principle: encode each value in a binary
string (binary encoding)

In principle we know how to make ZZZ...Z terms, and these can encode
any interaction

In practice:
— If we have two variables of size m than it will take m? Ising terms to
express each interaction
— Anything ZZZ or higher will require at least one auxilliary qubit
— Not very practical for general interactions
— Some specific interactions (i.e. multiplication of numbers) can be

expressed efficiently in this way [12]

A different approach: unary encodings, number of qubits scales with m
rather than log(m), but interactions easier

One-hot encoding, enforce constraint that exactly one of a set of m qubits
takes a |1) value, easier to imagine as a QUBO, set constraint A(}; z;—1)?

Since each qubit corresponds to a value the variable can take, interactions
are of the form z; ox; g, where («, ) index variables and (4, j) index values

A different way to do this, domain-wall encoding [13], use m — 1 Ising
Qubits in a frustrated chain —A\(—Z; + ZZZ;Q ZiZiv1 + Zm—1)

m fold degenerate ground state of domain wall states (where exactly one
term is frustrated), can be addressed by terms of the form Z;,1 — Z; which
give zero if there is no domain wall between ¢ and 7 + 1, but 1 if there is,
products of these terms are quadratic

Domain-wall encoding is a new idea, but recent work shows it performs
better [14], and it can be shown to be maximally optimal if generic inter-
actions are desired [15]

Key Points

NP-hard does not mean “non-polynomial”, instead non-deterministic poly-
nomial relating to a (fictional) maximally lucky device

It is a “worst case” statement random instances may not be hard (Super
Mario levels are not typically (computationally) hard)



Uniform hardness is the case where random instances are hard, much more
difficult to prove

Real problems do not look like Ising models, and need to be mapped to
hardware graphs

Most mapping involves constraining to an optimal subspace and poten-
tially adding extra qubits

Better problem mapping for annealing is an area of active research
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