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1 Overview: what I am going to cover

� This lecture: some of the theory behind quantum annealing and related
algorithms, why we expect they could do better than classical

� Next lecture: problem mapping and some important complexity theory,
essentially all classical, but important background for understanding quan-
tum annealing

� Third lecture: Advanced topics, brief overview of more advanced aspects
such as error correction, biased searching methods, shortcuts to adiabatic-
ity

2 Before we do anything, why should we care:
combinatorial optimisation (and sampling)

� These problems come up everywhere, logistics, design, biology, computing,
probabilistic inference, machine learning etc...

� Better solutions to these problems could make a huge difference

� A finite (but large) number of possible solutions, can’t practically check
them all → combinatorial explosion
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� Need clever tricks to find “good” solutions, but probably can’t find a trick
to always find the absolute best solution (P? = NP )

� Sampling, sometimes you want to find many “good” solutions (for example
thermal distributions)

3 Terminology

� A warning: historical use of terminology is not consistent and still evolv-
ing, be careful when reading papers, check methods, don’t just rely on the
meaning of words

� Where it is seems to be converging to:

1. Quantum Annealing=Anything using continuous time quantum evo-
lution to solve problems which involved parameter “sweeps”, usually
finite temperature

2. Adiabatic Quantum Computing=Quantum Annealing in the limit
of slow evolution (where the adiabatic theorem applies) and closed
systems

3. Diabatic Quantum Computing= Quantum annealing with closed sys-
tems but with rapid quenches

4. (continuous time) quantum walks=Specific algorithms which are based
on evolution with constant Hamiltonians

5. Quantum Approximate Optimisation Algorithm (QAOA)= (a.k.a.
Quantum Alternating Operator Ansatz) A related protocol where
operators are applied in an alternating way (often compiled to gate
model), AQA= Approximate Quantum Annealing, a similar protocol
but with parameters chosen in a different way

Where the language seems to be evolving to (involves some guesswork and
not universal)
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4 Reminder of continuous time quantum me-
chanics and how it can be used to compute

� Hamiltonians acting on qubits: n qubits and N = 2n possible states,
states represented by bitstrings, Hamiltonians can be thought of as huge
matrices because QM is linear

� Evolution wrt. Schrödinger equation ( ∂
∂t |ψ〉 = −iH(t) |ψ〉) can be written

|ψ(t)〉 = U(H, t) |ψ(0)〉 For a time independent H

U(H, t) = exp(−iH t) (1)

In general, for a time dependent Hamiltonian the evolution needs to be
represented by an infinite product of matrix exponentials:

U(H, tmax) =

∫ tmax

0

Dt T exp(−iH(t)) =

lim
q→∞

T
q∏

j=1

exp(−i tmax

q
H(

j tmax

q
)) (2)

T indicates time ordering, path integral taken over multiplication rather
than addition. This representation is useful for (small) numerical simula-
tion since matrix exponentials can be calculated numerically.
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� Combinatorial optimisation problems can be represented as Hamiltonians
which are diagonal in the computational basis,→ lower energy states=better
solutions

� Adiabatic theorem of quantum mechanics, (look it up if you don’t know
what it is)

� Beyond adiabatic: diabatic and finite (low) temperature, not a lot of
theory, diabatic is a recent “hot topic” theory developing rapidly [11]

� Can also simulate continuous time on a gate model machine (and recent
QAOA work suggests this is the best way to solve optimization problems
[22]), research on continuous time still valuable if gate model dominates

5 Why continuous time might be useful

� Unstructured search, only information is whether answer is right or wrong
→ continuous time analogue of Grover search

Two Hamiltonians, problem Hamiltonian Hsearch = −|x〉〈x|, where |x〉 is
the solution (classical bit-string). Driver Hamiltonian, Hfull = −|ω〉〈ω|, where
|ω〉 = 1√

N

∑
i |i〉, equal sum of all computational basis states. Start in equal

superposition |ω〉, unbiased initial guess.
By symmetry, all dynamics take place in the space spanned by |x〉 and |ω〉.

These aren’t orthogonal, but we can choose an orthogonal basis made from these
states, I choose {|x〉 , |ω̃〉 = |ω〉 − 1√

N
|x〉}. In this reduced basis

Hsearch =

[
−1 0
0 0

]
(3)

and

Hfull =

[
− 1

N −
√
N−1
N

−
√
N−1
N

1
N − 1

]
=

[
0 − 1√

N

− 1√
N

−1

]
+O(

1

N
) (4)

Full matrix

H(Γ) = Hsearch + ΓHfull ≈

[
−1 −Γ 1√

N

−Γ 1√
N

−Γ

]

= −1

2
(1 + Γ)1 +

1

2
(1− Γ)σz − Γ√

N
σx (5)

where σz and σx are the respective Pauli matrices. Eigenvalues will be

E± = −1

2
(1 + Γ)±

√
1

4
(1− Γ)

2
+

Γ2

N
(6)

gap is therefore

∆(Γ) = E+ − E− =

√
(1− Γ)

2
+ 4

Γ2

N
(7)
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with a minimum gap at Γ = 1 of 2√
N

. Find (un-normalized) Eigenvectors v±
by applying top line of the matrix in Eq. 55

− 〈v± | x〉 −
Γ√
N
〈v± | ω̃〉 = E± 〈v± | x〉 . (8)

solve to obtain

〈v± | x〉
〈v± | ω̃〉

=

√
N

Γ
(1 + E±) =

√
N

Γ

(
1

2
(1− Γ)±

√
1

4
(1− Γ)

2
+

Γ2

N

)
. (9)

For every case except for Γ ≈ 1, we find 〈v+|x〉
〈v+|ω〉 ∝

√
N , eigenvector has a

high overlap with |x〉 and therefore there are no search dynamics. At Γ =
1, the gap takes a minimum value of ∆(Γ = 1) = 2

√
N and 〈v+ | x〉 =

〈v+ | ω̃〉, 〈v− | x〉 = −〈v− | ω̃〉. For large N , |ω〉 = |ω̃〉 + O( 1
N ), and therefore〈

x | exp
[
−iH(Γ = 1)π

√
N
]
|ω
〉

= 1 − O( 1
N ) [33]. In other words, evolving for

at time proportional to
√
N can solve the problem, this is exactly the Grover

speedup (quantum walk in this example)! All classical methods would take
O(N) to find the answer.

Also works with adiabatic but not with linear schedule! For linear schedule
scales as 1

∆2 → no better than classical. Non-linear schedule can get scaling

with 1
∆ , same

√
N speedup [44].

Can also interpolate between the two and get same speedup, in other words,
I can make an algorithm which is 30% AQC and 70% quantum walk and it will
also get a

√
N speedup [55].

Other evidence:

� All quantum circuits can be mapped to (non-stoquastic) AQC, in other
words it is a universal model→ complicated to prove, I won’t cover it here

� Other permutation symmetric models → efficient to simulate because of
symmetry, can show exponential speedups

� Extrapolated numerical scaling from small sizes → suggests that perfect
continuous. time will do very well

� D-Wave experiments, too complicated to discuss in detail here → mixed
results but essentially whether future versions will be useful is an open
question

6 What about real problems?

� Ising model

HIsing =
∑
ij

JijZiZj +
∑
i

hiZi (10)
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� Simplest possible problem: → max cut, take a graph G, for every edge
set Jij = 1, −1 unit of energy where pairs disagree +1 where they agree,
minimum energy for maximum number of disagreements

� Slightly more complicated: maximum independent set, take a graph G,
for each edge add −1 to h at each end, and set Jij = 1, energy of −1 for
|00〉, |01〉, |10〉, energy of +3 for |11〉, enforces independence, no adjacent
ones, add an additional field of 0 < λ < 4 to encourage maximum number
of ones

� Next lecture will be the details of problem mappings!

7 Energy arguments for diabatic quantum com-
puting

� Consider a quantum walk H = ΓHhop +Hproblem

� Start in the ground state of Hhop, energy expectation 〈Hproblem〉 can only
go down, why?

� Energy has to be conserved and 〈Hhop〉 can only go up [66, 77]

� Furthermore, if we take Γ→ Γ′ where Γ′ < Γ than 〈H〉 decreases (setting
gs energy to zero w.l.o.g) while 〈Hproblem〉 remains unchanged

� By rescaling time/energy we can always put the evolution in the form
H(t) = Γ(t)Hhop +Hproblem therefore, diabatic energy evolution can never
increase 〈Hproblem〉 as long as Γ is non-increasing [88]

� Arguments can also be made based on modified adiabatic theorem, but
require special structure [11]

8 Summary

� Quantum annealing is exciting because it can solve combinatorial optimi-
sation problems, which come up everywhere

� Be careful when reading quantum annealing papers, terminology is not
standardized

� Continuous time evolution expressed as an integral over multiplication
rather than addition

� Continuous time versions of Grover’s algorithm exist, show quantum speedup
possible in this setting, + other bits of evidence

� Diabatic quantum computing (no noise but much too fast to be adiabatic)
is a popular recent topic and the theory is just being established, too fast
to rely on simple adiabatic theorem
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