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Almost any problem can be cast as optimisation

» ‘Traditional’ NP-hard problems: travelling sales person,
routing, scheduling etc...

Image: public domain taken from wikimedia commons

» Chemistry: minimise energy to find ground state
excited states are constrained minimisation

» Factoring/cryptography: construct logical operations
(multiplication, stream cypher, etc...) fix outputs and
minimize number of logically incorrect

» Error correction/ fault diagnosis: penalize errors and minimize
number subject to observations

» Machine learning: optimise correlations to learn pattern



The basic ingredients of optimisation algorithms

1 Evaluate fitness (energy) of candidate solution(s)
2 Propose new candidate solution(s) based on previous fitness
values

Examples:
» Monte Carlo: [1] Energy difference between new and proposed
state calculated. [2] Change ‘accepted’ based on difference.
» Gradient descent: [1] Energy of nearby solutions calculated.
[2] Used to find ‘downhill’ direction.
» Evolutionary algorithms: [1] Fitness evaluated. [2] Less fit die,
more fit get to breed.

’ Same basic ingredients in quantum optimisation




Convex versus non-convex

energy energy
configuration configuration
Convex optimisation Non-Convex optimisation
e Only a single global energy e Many local energy minima
minimum e Will get stuck if just trying
e Can always be solved by to go downhill
continually ‘going downhill’ e Need clever algorithms to
e Still need to evaluate energy get out of local minima
to solve e Can be difficult even if
e Only resource intensive if energy evaluation is
evaluating energy is difficult efficient




Early quantum opportunities

Early quantum computers...
> __.will be expensive — need h

> _..will be small and imperfect
quantum/classical algorithms

igh value problems which

classical computers don't solve efficiently

— need hybrid

Convex optimisation

e Cases where evaluating the
energy itself is hard

e Chemistry and materials —
energy requires QM to
calculate

e Variational algorithms: QC

only used to create state and
calculate energy

Non-Convex optimisation

e Use QM to explore energy
landscape

e Tunnelling and interference
could allow faster than
classical search

e Are ubiquitous: protein
folding, logistics,
communication, design...

QC=quantum computer; QM=quantum mechanics




Convex: Variational quantum eigensolver (VQE)

Hybrid quantum//classical algorithm

. lterate until suitably converged

1
2
3. Calculate update parameters to improve energies
4

. QC prepares state characterized by a set of parameters

. Quantum measurements calculate energies of ‘nearby’ states

Applied by IBM as demonstration of early quantum computer *:
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Non-convex: Quantum annealing family of meta-heuristics

Large ‘family’ of meta-heuristics*: common element is
superposition of a driver Hamiltonian which mixes between states
and a problem Hamiltonian which defines problem through phases

H(t) = A(t)Hdriver + B(t)Hproblem

final

Largest scale (dissipative) implementation is devices by D-Wave
systems Inc.

*adiabatic quantum computing, quantum annealing, continuous time
quantum walk, and quantum approximate optimisation algorithm Warning! the
terminology around adiabatic and quantum annealing is-not standardized



Hybrid algorithms using annealing family of meta-heuristics

Build subroutine which searches based on initial solution candidate,
methods known for coherent adiabatic algorithms* and dissipative
quantum annealing

smooth rough
region region

QA finds wide
minima

classical algorithm = ¢, cessful
=, tunnelling

Use quantum subroutine call only for the features it handles well
— narrow features where tunnelling can search effectively

*A. Perdomo-Ortiz, S. E. Venegas-Andraca, & A. Aspuru-Guzik, Quantum
Inf. Process 10: 33 (2011).

TN. Chancellor, New Journal of Physics 19, 2, 023024 (2017).



Real world example: reverse annealing

1 — , —
,"' | /,
08 \\\ . \\‘, /,’ o
Yo o/ false minimum
L .
26 V/
3 by :
8 I3 !
D4 A I
a / R
JE [ true minimum}s
s \ i
02 S / (narrow)
. o /
G T Y S S
0.5 0.6 0.7 0.8 0.9
o

0
0.3 0.4
» Uses dissipation on real D-Wave quantum annealer to search

locally, smaller s' — broader search
P> Experimental test shows that device searches locally in

solution space
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A huge number of possible reverse annealing algorithms

1. Simple version 1: search locally around best classical solution
» Any improvement is an immediate win
» But only likely to find solutions ‘near’ best classical

2. Simple version 2: search locally around randomly chosen state
» May avoid a broad false minima

3. Monte Carlo like algorithms (see NJP 19, 2, 023024 (2017))
» Transverse field parameter s’ controls tradeoff between
exploration and exploitation
—similar to temperature in Monte Carlo
» Quantum analogues of many known classical algorithms

4. Genetic algorithms (see aryiv:1609.05875)
» Compose guess from two or more known solutions

» Most general version requires more controls than currently
available



What does an early quantum advantage look like?
Old way of thinking:

Algorithm with known best classical scaling — QC performs better
time
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> Not amenable to hybrid algorithms

» Scaling not known for important real world problems, we
haven't even proven that P % NP!

More realistic:

Meaningful improvement in practice by...
» finding more optimal solution than classical finds by itself,
» solving problem faster or using less energy,
» better sampling of a distribution,

» finding solutions which are better in some other way...




Take away messages
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Image: wikimedia commons, photo taken by user: Thomas Yuan

» Many problems can be cast as optimisation

e Convex — one global minimum
e Non-convex — many local minima

» Quantum can be useful for both

e Convex — useful if optimality hard to evaluate

e Non-convex — useful for exploring solution space
» Many hybrid quantum/classical tools in both cases

» Early QCs will be small, imperfect, and expensive, need to
find appropriate problems and algorithms

» Quantum advantage can come in many forms — not simple
to quantify in all cases




