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Almost any problem can be cast as optimisation
I ‘Traditional’ NP-hard problems: travelling sales person,

routing, scheduling etc...

Image: public domain taken from wikimedia commons

I Chemistry: minimise energy to find ground state
excited states are constrained minimisation

I Factoring/cryptography: construct logical operations
(multiplication, stream cypher, etc...) fix outputs and
minimize number of logically incorrect

I Error correction/ fault diagnosis: penalize errors and minimize
number subject to observations

I Machine learning: optimise correlations to learn pattern



The basic ingredients of optimisation algorithms
1 Evaluate fitness (energy) of candidate solution(s)
2 Propose new candidate solution(s) based on previous fitness

values

Examples:
I Monte Carlo: [1] Energy difference between new and proposed

state calculated. [2] Change ‘accepted’ based on difference.
I Gradient descent: [1] Energy of nearby solutions calculated.

[2] Used to find ‘downhill’ direction.
I Evolutionary algorithms: [1] Fitness evaluated. [2] Less fit die,

more fit get to breed.

Same basic ingredients in quantum optimisation



Convex versus non-convex

energy

configuration
Convex optimisation

• Only a single global energy
minimum

• Can always be solved by
continually ‘going downhill’

• Still need to evaluate energy
to solve

• Only resource intensive if
evaluating energy is difficult

energy

configuration
Non-Convex optimisation

• Many local energy minima

• Will get stuck if just trying
to go downhill

• Need clever algorithms to
get out of local minima

• Can be difficult even if
energy evaluation is
efficient



Early quantum opportunities
Early quantum computers...

I ...will be expensive → need high value problems which
classical computers don’t solve efficiently

I ...will be small and imperfect → need hybrid
quantum/classical algorithms

Convex optimisation

• Cases where evaluating the
energy itself is hard

• Chemistry and materials →
energy requires QM to
calculate

• Variational algorithms: QC
only used to create state and
calculate energy

Non-Convex optimisation

• Use QM to explore energy
landscape

• Tunnelling and interference
could allow faster than
classical search

• Are ubiquitous: protein
folding, logistics,
communication, design...

QC=quantum computer; QM=quantum mechanics



Convex: Variational quantum eigensolver (VQE)

Hybrid quantum/classical algorithm

1. QC prepares state characterized by a set of parameters

2. Quantum measurements calculate energies of ‘nearby’ states

3. Calculate update parameters to improve energies

4. Iterate until suitably converged

Applied by IBM as demonstration of early quantum computer ?:

?A. Kandala et. al. Nature 549, 242–246 (2017).



Non-convex: Quantum annealing family of meta-heuristics

Large ‘family’ of meta-heuristics?: common element is
superposition of a driver Hamiltonian which mixes between states
and a problem Hamiltonian which defines problem through phases

H(t) = A(t)Hdriver + B(t)Hproblem
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Largest scale (dissipative) implementation is devices by D-Wave
systems Inc.

?adiabatic quantum computing, quantum annealing, continuous time
quantum walk, and quantum approximate optimisation algorithm Warning! the
terminology around adiabatic and quantum annealing is not standardized



Hybrid algorithms using annealing family of meta-heuristics

Build subroutine which searches based on initial solution candidate,
methods known for coherent adiabatic algorithms? and dissipative
quantum annealing †
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QA finds wide
minima

Use quantum subroutine call only for the features it handles well
→ narrow features where tunnelling can search effectively

?A. Perdomo-Ortiz, S. E. Venegas-Andraca, & A. Aspuru-Guzik, Quantum
Inf. Process 10: 33 (2011).

†N. Chancellor, New Journal of Physics 19, 2, 023024 (2017).



Real world example: reverse annealing
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I Uses dissipation on real D-Wave quantum annealer to search
locally, smaller s’ → broader search

I Experimental test shows that device searches locally in
solution space

NQIT industrial partnership with D-Wave Systems Inc.



A huge number of possible reverse annealing algorithms

1. Simple version 1: search locally around best classical solution
I Any improvement is an immediate win
I But only likely to find solutions ‘near’ best classical

2. Simple version 2: search locally around randomly chosen state
I May avoid a broad false minima

3. Monte Carlo like algorithms (see NJP 19, 2, 023024 (2017))
I Transverse field parameter s ′ controls tradeoff between

exploration and exploitation
–similar to temperature in Monte Carlo

I Quantum analogues of many known classical algorithms

4. Genetic algorithms (see arχiv:1609.05875)
I Compose guess from two or more known solutions
I Most general version requires more controls than currently

available



What does an early quantum advantage look like?

Old way of thinking:

Algorithm with known best classical scaling → QC performs better
time

size (N)

I Not amenable to hybrid algorithms

I Scaling not known for important real world problems, we
haven’t even proven that P 6= NP!

More realistic:
Meaningful improvement in practice by...

I finding more optimal solution than classical finds by itself,

I solving problem faster or using less energy,

I better sampling of a distribution,

I finding solutions which are better in some other way...



Take away messages

Image: wikimedia commons, photo taken by user: Thomas Yuan

I Many problems can be cast as optimisation

• Convex → one global minimum
• Non-convex → many local minima

I Quantum can be useful for both

• Convex → useful if optimality hard to evaluate
• Non-convex → useful for exploring solution space

I Many hybrid quantum/classical tools in both cases

I Early QCs will be small, imperfect, and expensive, need to
find appropriate problems and algorithms

I Quantum advantage can come in many forms → not simple
to quantify in all cases


