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Almost any problem can be cast as optimisation
I ‘Traditional’ NP-hard problems: travelling sales person,

routing, scheduling etc...

Image: public domain taken from wikimedia commons

I Chemistry: minimise energy to find ground state
excited states are constrained minimisation

I Factoring/cryptography: construct logical operations
(multiplication, stream cypher, etc...) fix outputs and
minimize number of logically incorrect

I Error correction/ fault diagnosis: penalize errors and minimize
number subject to observations

I Machine learning: optimise correlations to learn pattern



The basic ingredients of optimisation algorithms
1 Evaluate fitness (energy) of candidate solution(s)

2 Propose new candidate solution(s) based on previous fitness
values

Examples:
I Monte Carlo: [1] Energy difference between new and proposed

state calculated. [2] Change ‘accepted’ based on difference.
I Gradient descent: [1] Energy of nearby solutions calculated.

[2] Used to find ‘downhill’ direction.
I Evolutionary algorithms: [1] Fitness evaluated. [2] Less fit die,

more fit get to breed.

Same basic ingredients in quantum optimisation



Convex versus non-convex
energy

configuration
Convex optimisation

• Only a single global energy
minimum

• Can always be solved by
continually ‘going downhill’

• Still need to evaluate energy
to solve

• Only resource intensive if
evaluating energy is difficult
Not the topic of this talk

energy

configuration
Non-Convex optimisation

• Many local energy minima

• Will get stuck if just trying
to go downhill

• Need clever algorithms to
get out of local minima

• Can be difficult even if
energy evaluation is
efficient



Quantum annealing family of meta-heuristics

Large ‘family’ of meta-heuristics?: common element is
superposition of a driver Hamiltonian which mixes between states
and a problem Hamiltonian which defines problem through phases

H(t) = A(t)Hdriver + B(t)Hproblem
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Largest scale (dissipative) implementation is devices by D-Wave
systems Inc.

?adiabatic quantum computing, quantum annealing, continuous time
quantum walk, and quantum approximate optimisation algorithm Warning! the
terminology around adiabatic and quantum annealing is not standardized



A brief note about terminology

For the purposes of this talk:

I Adiabatic quantum computation (AQC) → closed system
protocols where an eigenstate is maintained via the adiabatic
theorem of quantum mechanics

I Quantum Annealing (QA) → system is not well described by
the adiabatic theorem, either because it is an open system or
because evolution is much faster than adiabatic

The terminology is not standardized and different groups may use
these terms differently



Adiabatic quantum computing

Traditional picture:

I Map an NP-hard optimization problem to a Hamiltonian,
unknown ground state is solution

I Slowly change from a (driver) Hamiltonian with an easily
prepared ground state to problem Hamiltonian

I Adiabatic theorem of quantum mechanics → success
probability arbitrarily close to 100 % by running long enough
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H(t) = A(t)Hdriver + B(t)Hproblem



Advantages and disadvantages of this picture

Theoretically satisfying

• Algorithm is effectively deterministic → “always” succeeds

• Intuitive picture involving only ground and first excited state

Let’s assume P6=NP ?

• Algorithm succeeds roughly 100% of the time

• Total runtime needs to be exponential in size of problem →
system needs to remain coherent for exponentially long time

?For those unfamiliar with complexity theory, this is basically saying “let’s
assume that hard optimization problems exist”, most experts believe P6=NP



What can be done?
Restore coherence somehow

• Error correction, difficult to
do in continuous time, but
progress being made

• Low temperature dissipation
can restore coherence →
would have to be very low
temperature

• Have to mitigate all errors
for a very long time

• Not the subject of this talk

image public domain from wikimedia commons

Succeed with low probability

• Total runtime is still
exponential in problem size

• Each run is short →
exponentially many needed
to hit right answer

• Exponentially low success
each run is conceptually
unsatisfying...

• ... but much less
demanding for coherence

Lottery



Example: continuous time quantum walk on spin glass

I Start with an equal positive superposition of all solutions,
|ω〉 = 1√

N

∑
i |i〉

I Evolve with a fixed Hamiltonian Hwalk = γHhop + Hproblem

I Hhop = −∑
i σ

x
i → superposition is ground state

I Hproblem =
∑

i ,j Ji ,jσ
z
i σ

z
j +

∑
i hiσ

z
i where hi and Ji ,j drawn

from the same Gaussian distribution

I Measure after random short period of time, repeat many times
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See Adam Callison et al 2019 New J. Phys. 21 123022 for details,
work with Adam Callison, Viv Kendon, and Florian Mintert



How is this a ‘walk’? How does it find solutions?
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I Hhop effectively forms a hypercube with a bitstring at each
vertex, probability amplitude ‘walks’ between different states

I Hproblem contributes phases which guide the walk

Energy is conserved 〈Hwalk〉t=0 = 〈Hwalk〉t>0 since the system starts
in the ground state of Hhop:
〈Hproblem〉t>0 − 〈Hproblem〉t=0 = 〈Hhop〉t=0 − 〈Hhop〉t>0 ≤ 0

Walk seeks out ‘good’ solutions!



How much to walk? Choosing the γ parameter

Hwalk = γHhop + Hproblem

Still have one undefined parameter, γ, how do we set it? does it need
to be set precisely? How do we make sure we are not ‘cheating’?

P∞ is the long time average success probability

Short answer: yes, γ does not have to be precisely set to find solu-
tions effectively, and we can find a heuristic to choose it (without
cheating). For details about the heuristic see Adam Callison et al
2019 New J. Phys. 21 123022



How well this works, numerically extracting scaling
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I N = 2n possible bitstrings, one correct solution, runtime
scales as inverse probability

I Scaling of 1
N0.417 better than both classical guessing ( 1

N ) and
1√
N

unstructured (Grover like) quantum search

The structure of the problem (correlations in bitstring energies) is
playing a role in the computational mechanism, otherwise could not
beat 1√

N
scaling



A note on runtimes of single walk
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There are actually two curves on top of each other in the above plot:

1. Infinite time average

2. Average over a time ∝ √n ?

∴ The system is equilibrating quickly

Implies that the walk is probably occurring in the precursor to a
paramagnetic phase, rather than a spin glass phase → spin glass
phase would equilibrate slowly

?yes n, the number of qubits not N = 2n



Compare to problems without correlations
Random Energy Model (REM): each bitstring is assigned a random
independent energy

I Dynamics become dominated by a single close avoided
crossing, require fine tuned γ, technically difficult, may not be
possible to find correct value

I Requires single long run for high success probability → need
long coherence time
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Compare to unstructured search

I Continuous time analog to Grover search

I Problem Hamiltonian is a single marked bitstring |m〉〈m|:
H(s) = −(1− s)

∑
i σ

x
i + s(1− |m〉〈m|)
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I Same optimal speedup as gate model finds solution in time√
N rather than N from classical guessing/exhaustive search

I Exponentially sensitive to parameter setting (values of s)

I Succeeds with O(1) probability after
√
N runtime

For a detailed study of AQC and QW, see Morley et. al. Phys. Rev.
A 99, 022339 (2019), for practical implementation, see Dodds et.
al. Phys. Rev. A 100, 032320 (2019)



(Why) is the effect of correlations interesting?

If the bitstring energies are uncorrelated no classical algorithm could
do better than random guessing, why?

Energy of one bitstring tells nothing about energy of neighbours

Complementary to the search-like mechanism usually attributed to
quantum algorithms
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Not just a ‘one off’ difference between spin glasses and REM, but
more general between correlated and uncorrelated energies



Beyond simple quantum walks

Study of quantum walks on spin glasses fruitful for understanding
computational mechanisms, but scaling is not cutting edge

How do we build better algorithms on top of this result?

1. Add a (rapid) quench to dissipate some energy
I Need theory which goes beyond adiabatic and works for rapid

quenches

2. Use as a hybrid subroutine along with classical computation
I Needs to be coherent and ideally compatible with the theory

from point 1



Rapid quenches?
The energy conservation argument given previously can be extended
to any monotonic (closed system) quench

H(t) = A(t)Hdrive + B(t)Hproblem
A(t)

B(t)
≥ A(t + δt)

B(t + δt)
∀t

Sketch of proof:

1. Trotterize time evolution: A(t)→ A(t + δt) and
B(t)→ B(t + δt) and apply
|ψ(t + δt)〉 = exp(−iH(t)δt)|ψ(t)〉 in separate steps

2. Rescale time so that Hamiltonian always resembles quantum
walk Heff (Γ(t)) = Γ(t)Hdrive + Hproblem

3. In rescaled version Γ(t) ≥ Γ(t + δt) ∴
〈Heff (γ(t))〉ψ(t) − γ(t) n ≥ 〈Heff (Γ(t + δt))〉ψ(t) − Γ(t + δt) n

4. Because 〈Heff (Γ(t))〉ψ(t) ≥ −Γ(t) n ∀t , 〈Hproblem〉ψ(t) ≤ 0 ∀t

Details can be found in Callison et. al. PRX Quantum 2, 010338



A very general result!

What is needed for result to hold:

1. Monotonic Γ(t) ≥ Γ(t + δt) where Γ(t) = A(t)
B(t)

2. Start in ground state of Hdrive

3. Driver not gapless → not a concern for real problems

What is allowed:

1. No limit on how fast algorithm runs

2. Discontinuities in Γ(t) are ok

3. Hdrive does not need to be diagonal in an orthogonal basis to
Hproblem → starting state can be biased



Intuitive example: two stage quantum walk

Perform a quantum walk at γ1, and than use result as an input state
for a second walk at γ2 < γ1
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I Energy expectations: Green= γ1,2〈Hdrive〉; Blue= 〈Hproblem〉 ;
Gold= γ1,2〈Hd〉+ 〈Hproblem〉

I Total energy conserved except for at dashed line where γ
decreases

I Non-instantaneous quench effectively infinite stage quantum
walk



Why is the rapid quench result important?

General, but rather weak:
Any monotonic quench at least as good as measuring the initial
state

1. Design protocols to maximize dynamics → don’t need to
worry about dynamics being counter-productive

2. A biased search can already start from a very good guess
discussed later

3. Mechanism to understand dynamics very far from adiabatic
limit

Couple with tools to quantify dynamics to make more powerful
(bonus story if time)!



Connection to gate model algorithms: Quantum
Alternating Operator Ansatz (QAOA)

I Apply? Hdriver and Hproblem sequentially rather than
simultaneously

I Can simulate quantum annealing in the limit of many
repetitions

I Machine learning usually used to optimise controls

I Recent work by others? shows optimal QAOA looks very
similar (but not identical) to simulated quantum annealing

I Is the (approximate) energy conservation mechanism the
reason for this behaviour?

?QAOA literature calls these mixer and phase separator, but I will use the
quantum annealing terminology to avoid confusion

?Brady et. al. arXiv:2107.01218, Phys. Rev. Lett. 126, 070505 (2021)



Pre-annealed quantum walk, single spin glass example

Perform an anneal before a quantum walk to dissipate energy
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I Vertical dashed line is end of pre-anneal left figure is results,
right is protocol

I Longer pre-anneal lowers 〈Hproblem〉 (solid lines top left plot)
and raises success probability

I How does this affect scaling?

I Stop in paramagnetic regime and avoid exponentially small
gaps in spin glass



Scaling on spin glasses

Perform pre-annealed walk on spin glasses from Adam Callison et
al 2019 New J. Phys. 21 123022 (these results can be found in
arχiv:2007.11599)
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I Top figure shows success probability versus pre-annealing time
for different size spin glasses

I Bottom shows scaling with p ∝ 2κn when n is number of
qubits (calculated based on inset)

I Pre-annealing not only improves success probability at one
size, it improves scaling! → more on next slide



Scaling boost from pre-annealing

I Blue and Magenta quantum walk (two different ways of
choosing γ) → a bit worse than classical state of the art

I Red and Gold Pre-annealed walks with γ values from regular
QW → significantly better than classical state of the art

I Black and Gray Pre-annealed quantum walk (more optimal γ)
→ way better than classical state of the art

I Green Effective scaling for classical branch-and-bound (for
comparison)



Pre-annealed quantum walk beats classical state of the art

I Thanks to Zoe Burtrand (summer project student at Durham)
for optimal branch-and-bound (BnB) implementation

I Scaling exponent less than half of state-of-the-art classical
(optimized version, currently unpublished)

I Comparable to quantum branch-and-bound scaling exponent
found in arχiv:1906.10375 ours: 0.145, theirs 0.186

However...

I Our techniques are not hybrid like the quantum BnB (i.e. do
not use classical tricks on top of quantum)

I Room for improvement as a subroutine in hybrid quantum
classical? (maybe even combining with quantum BnB)



Hybrid subroutines in Continuous time: a review
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Known techniques:
Reverse annealing NC 2017 New J. Phys. 19 023024 as
implemented on D-Wave devices
Relies on dissipation, not suitable for coherent algorithms

‘Mexican hat’ schedule Perdomo-Ortiz et. al. Quantum Inf
Process (2011) 10: 33. doi:10.1007/s11128-010-0168-z?

Involves three separate Hamiltonians, not compatible with rapid
sweep proof in Callison et. al. PRX Quantum 2, 010338

Biased driver Hamiltonian Chinese Physics Letters, 30 1 010302
and Tobias Graß Phys. Rev. Lett. 123, 120501 (2019)

Compatible with proof in Callison et. al. PRX Quantum 2, 010338,
and can be used with quantum walk: focus on this

?sometimes also called reverse annealing



Experimental biased search on a D-Wave device

0.0 0.1 0.2 0.3 0.4 0.5

Fluctuation Strength

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

il
it

y

start

false minimum 
(broad)

true minimum
(narrow)

other

I Experimental implementation of dissipative reverse annealing

I Moderate fluctuations lead to finding nearby true minimum,
too strong and get stuck in false minimum

I Can also be used to measure effect of noise on search range,
but that not the topic of this talk...

See Chancellor and Kendon Phys. Rev. A 104, 012604 for details



Reverse annealing in algorithms (mostly work by others)?

1. Start from one solution to find other solution (D-Wave
whitepaper 14-1018A-A)
I Finding other solution 150x more likely then forward

2. Search locally around classical solution (arχiv:1810.08584)
I Start from greedy search solution
I Speedup of 100x over forward annealing

3. Iterative search (arχiv:1808.08721)
I Iteratively increase search range until new solution found
I Forward annealing could not solve any, reverse solved most
I See also: arχiv:2007.05565

4. Quantum simulation(Nature 560 456–460 (2018))
I Seed next call with result from previous
I Seeding with previous state makes simulation possible

5. Monte Carlo and Genetic like algorithms
I Quantum assisted genetic algorithm QAGA (arχiv:1907.00707)
I Finds global optima quickly where other methods struggle
I Theoretical discussion (my work) (NJP 19, 2, 023024 (2017)

and arχiv:1609.05875)
?forward annealing= traditional non-hybrid method



Biased driver Hamiltonian: our work?

Define driver Hamiltonian using fields which are not (completely)
transverse Hd =

∑n
i=1− cos(θ)σx

i − gi sin(θ)σz
i

I Start in ground state of Hd :
|ψ(t = 0)〉 =

⊗n
i=1

1√
2+2 gi cos(θ)

[(1 + gi cos(θ))|0〉+ sin(θ)|1〉]
I Starting state biased toward classical bitstring g , gi ∈ {−1, 1}
I Closed system with monotonic sweep (including QW), time

evolution improves the guess (on average):

〈Hproblem〉ψ(t) ≤ 〈Hproblem〉ψ(0)

I Ground state is optimal solution so adiabatic theorem holds
and dissipation can assist as well
Can use AQC, QW and QA mechanisms simultaneously

x
z

x
z x

z

?unpublished work with Laur Nita, Jie Chen, Adam Callison, Viv Kendon
and Matthew Walsh.



Quantum walk with biased driver: proof-of-concept
I Consider a guess where each bit has an independent

probability P of being wrong

I How good does the guess need to be before biasing
(parametrized by θ, θ = 0, no bias) improves the solution?

I Colour axis is success probability, line is optimal, result for
eight qubit max-2-sat,

I hybrid techniques become useful right around 50% success
probability, becomes significant around 45%

I Preliminary work by Laur Nita (PhD student)



Take home messages

Algorithms with exponentially low success probability in a single run

I Unless P = NP all algorithms will have exponentially low
success, exponential single run time, or both

I Only need to be coherent for single run → much less
demanding for hardware (lower precision needed as well)

I Less psychologically satisfying, but no other real drawback

Quantum walks on spin glasses

I Correlations in energy landscape play a role, allow better than√
N runtime

I Behaves differently from simple search, less demanding for
control precision (SS not good model for all computation!)

I Pre-annealing → performance competitive with state of art

I Working on hybrid subroutines



Bonus story: optimising annealing schedules using
energetic mechanism



Quantifying dynamics in a two state subspace

Transfer coefficent, ability to transfer between computational basis
states:
T (jk) = 2Γ(t)|〈k|Hdrive|j〉|

2Γ(t)|〈k|Hdrive|j〉|+|∆jk | (where ∆jk is the total difference in

diagonal matrix elements) Blue in figure

Disequilibrium coefficient, amount which Hproblem breaks the initial
equilibrium:
D(jk), defined the same as T (jk), but in the diagonal basis of Hdrive

rather than the computational basis Gold in figure

χ(jk) = T (jk) D(jk) quantifies total dynamics Green in figure



Estimating dynamics for the whole system

Sample over two level subsystems and find average χ value, χ =
〈χ(jk)〉jk

I Can be estimated by statistical sampling even for large systems

Left: two qubit quantum walk example, p100 is average success
probability for t ≤ 100
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Right: Maximising χ performs almost as well as the fine tuned
heuristic from Adam Callison et al 2019 New J. Phys. 21 123022
for finding the best γ for quantum walk



Finding optimal quench schedules

H(t) = A(t)Hdrive + B(t)Hproblem

I Define A(t) = (1− s(t)) and B(t) = s(t)

I Set ∂s
∂t ∝ 1

χ

I Compare to linear schedule s ∝ t for single SK instance
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Heuristic performs better than linear schedule!


