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Problem Statement: Ising Spin Glass Hamiltonian
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Goal is to find ground/low energy states

I ’Universal’ in the sense that any classical Hamiltonian can be
mapped to it De las Cuevas, Cubitt Science 351 6278

I Thermal/quantum distributions also useful for inference and
machine learning tasks ex. Amin et. al. arXiv:1601.02036,
Chancellor et. al. Scientific Reports 6, 22318 ...



Simulated Annealing (classical)

Updates drive toward thermal distribution with temperature T if
they obey detailed balance

P(S(1)→ S(2)) = exp(
(E (1)− E (2))

T
)P(S(2)→ S(1))

Start at high T and lower over time



Quantum Annealing (QA)
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Add non-commuting transverse field terms

H(s) = −A(s)
∑

i

σx
i + B(s)HISG

start at A(s=0)
B(s=0) � 1, go to B(s=1)

A(s=1) � 1
Quantum fluctuations + low temperature bath cause tunneling
toward low energy states



Beyond Simulated Annealing (classical)

Parallel Tempering
I Multiple replicas at different temperatures

I Swap replicas by rules which obey detailed
balance

I Pswap(i , j) =

min
[
1, exp

((
1

T (i) −
1

T (j)

)
(Ei − Ej )

)]
Population Annealing

I Anneal multiple replicas

I Probabilistically remove poorly performing
replicas and copy those which perform well

I Rules preserve average population and obey
detailed balance

I N̄(E ) = 1
Q exp

((
1

Told
− 1

Tnew

)
E
)

Can hybrid strategies combine these with calls to an annealer?
Can these strategies be used directly by a quantum annealer?



Difficulties in building new annealer strategies

I No cloning theorem → cannot copy quantum states

I Measurements (ex. energy) disturb state of system and likely
experimentally difficult

I Usual QA is global search, no way of inserting information
from previous runs

Solution → use annealer subroutine which starts and ends at s = 1
(recall B(s=1)

A(s=1) � 1) with programmed initial state



Hybrid computing using local search

Potential Strategies

1. Quantum and classical algorithms used together
I Classical input and output means that annealer can be used

alongside any classical algorithm
I Google have started looking into these ideas, see Hartmut

Neven talk at AQC 2016 1

2. Multiple local quantum searches controlled by classical
algorithm

I Analogues to parallel tempering and population annealing
which use annealer only

I Will return to this later

1Should be uploaded soon and viewable at: https://aqc2016.eventfarm.com



Cartoon example: energy landscape with rough and
smooth features

X

a)

b)

c)

a) QA gets stuck in broad local minima and cannot tunnel to
correct minima

b) Classical algorithms can easily explore the broad features, while
the annealer can explore the rough ones

c) Even random initialization can improve solution probabilities,
may hit rough region by chance



Range of local search

Define search range in terms of typical Hamming distance h(s ′)
from starting state
h(s ′) will increase monotonically with decreasing s ′ but...

I Not easy to theoretically predict

I Will depend on both problem and starting state



Choosing the range of the search

Options:

1. Choose heuristically: use different ranges and take best and
take best, typical h(s ′) for problem type etc...

2. Measure search range and use bisection to get to desired range

3. Define effective temperature and construct analogues of
known classical algorithms
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Effective Temperature

1. Single qubit Hamiltonian with transverse and longitudinal
components

H1(s ′) = −A(s ′)σx + B(s ′)σz

2. Diagonalize 2x2 matrix by hand to get occupation ratio

ψ(1)

ψ(2)
=

√
A(s ′)2 + B(s ′)2

A(s ′)
+

B(s ′)

A(s ′)

3. Invert Boltzmann equation to get effective temperature

Teff (s ′) = 2

[
ln

(∣∣∣∣ψ(1)

ψ(2)

∣∣∣∣2
)]−1



Parallel tempering and population annealing analogues

1. Replace metropolis updates with annealing runs consisting of
calls to annealer

2. Define ’energy’ and ’state’ as the lowest energy solution found
in an annealing run and the corresponding classical state

3. Replace T → Teff

4. Apply replica swapping/copying/deleting rules as usual



Problem mis-specification

I Error in each energy proportional to
√
Nqubit

I Only energy differences within search matter

I Energy difference proportional to square root of Hamming
distance

I ∴ relevant error proportional to
√

h(s ′) not
√

Nqubit
2

2Up to details about shape of the explored subspace, see arXiv:1606.06833



Implementation background: flux qubit circuit

Compound Compound Josephson Junction device like those used
in D-Wave systems

I φ is relevant variable

I φc Controls effective transverse field

I φx Acts as external bias

I Couple inductively between loops



Implementation Background: Single qubit potential

I Barrier width controlled by φc

I Energy difference between wells controlled by φx

I Quantum tunneling suppressed exponentially late in the anneal

I High barrier also blocks classical transitions



Runback protocol

1. Anneal forward using standard annealing protocol and trivial
Hamiltonian to initialize state

2. Reprogram problem Hamiltonian to target problem
I State protected due to high energy barrier

3. Anneal back to point s ′

4. Possibly wait a period τ and anneal back to s = 1



One slide on sampling

Annealer calls will not obey detailed balance, but...

I Somtimes quantum distributions can act as an effective proxy
for thermal distributions Otsubo et. al. Phys. Rev. E 86,
051138

I Quantum fluctuations may aid in machine learning tasks Amin
et. al. arXiv:1601.02036

I Relative weights of local minima can be calculated though
post processing: numerically calculate free energy with
classical Monte Carlo
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