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Potentially relevant UK projects for this audience

Collaborative computational project on quantum computing
(CCP-QC)

I Work with other CCPs (academic projects) to find uses fro
quantum computing within scientific research

I Idea is to use quantum computing to solve hard problems
which come up in academic research rather than industry

I https://ccp-qc.ac.uk/

Quantum Enhanced and Verified Exascale Computing (QEVEC)

I Work on how quantum coprocessors can (eventually) support
exascale computing

I Multiple projects looking at a variety of applications

I https://excalibur.ac.uk/projects/qevec/

Contact Viv Kendon at viv.kendon@strath.ac.uk if you are inter-
ested in potential collaborations



Please Interrupt With Questions!

I I am generally very “anti-slides” when it comes to teaching...
I but in this case there are too many plots to show to do it any

other way

I The main reason: I think it makes it more intimidating to ask
questions and go “off script”

I If you have a question your classmates are probably wondering
the same thing

I Fine if we don’t get through all the slides or have to skip
details

Wikimedia commons, created by user mimooh, CC attribution share-alike



Structure of This Lecture

I Setting the scene
I Big picture: quantum computing and hybrid algorithms
I (Why) should I care about quantum annealing?

I Adiabatic quantum computing and beyond
I Strengths of this concept
I How and why we need to go beyond the adiabatic theorem

I Hybrid (quantum/classical) computing in quantum annealing
I Different variants of reverse annealing
I What this gives us algorithmically

I Encoding and interaction graphs
I Example of importance: domain-wall encoding



The importance of hybrid algorithms?

In the near term:
I Quantum computers may be very powerful in some ways but...

I Will remain very limited in others
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For them to be genuinely useful, we must take advantage of the
computational power, while circumventing the limitations

I This naturally indicates a coprocessor arrangement

I Fundamentally hybrid → computational model involves both
classical and quantum steps

I This is different from just being supported by classical
computation, see paper for full details

?see: Callison and Chancellor Phys. Rev. A 106, 010101 (2022)



This isn’t a new idea in computing?

Classical computing already makes heavy use of coprocessors:

I Graphics cards → good for highly parallel processing

I Application specific integrated circuits

I Neuromorphic devices → structures similar to natural neural
networks

Wikimedia commons, created by user Mmanss, CC attribution share-alike

I No reason to think the same logic won’t apply for quantum

I Needs fast interconnects and collocation with classical (HPC)
resources (Jülich is a leader on this front)

?see: Callison and Chancellor Phys. Rev. A 106, 010101 (2022)



Adiabatic quantum computing

Traditional picture:

I Map an NP-hard optimization problem to a Hamiltonian,
unknown ground state is solution

I Slowly change from a (driver) Hamiltonian with an easily
prepared ground state to problem Hamiltonian

I Adiabatic theorem of quantum mechanics → success
probability arbitrarily close to 100 % by running long enough
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Example of Ising problem mapping ?

Have:
I Binary variables Zi ∈ {−1, 1}
I Minimisation over Hamiltonian made of single and pairwise

terms HIsing =
∑

i hiZi +
∑

j>i Ji ,jZiZj

Want:
I Maximum independent set: how many vertexes on a graph

can we colour so none touch? → NP hard

Method:

1. For an edge between vertex i and j add Zi + Zj + ZiZj →
penalizes colouring (Z = 1) adacent vertexes

2. Add −λZi to reward coloured vertexes (0 < λ < 1)
?Taken from the notes of a physics level 3 computing project I wrote, full

notes at: http://nicholas-chancellor.me/QOpt project final.pdf



Minor embedding

I Strong ‘ferromagnetic’ (−ZiZj ) coupling energetically
penalizes variables disagreeing

I If strong enough than entire ‘chain’ acts as a single variable

I Mathematically corresponds to mapping one graph to graph
minors of another

Can embed arbitrary graphs into quasi-planar hardware graph with
polynomial (n2 for fully connected) overhead → Ising model re-
stricted to hardware graph is also NP-hard

In practice this leads to a large overhead→ important consideration
for solving real problems



Advantages and disadvantages of the adiabatic picture

Theoretically satisfying

• Algorithm is effectively deterministic → “always” succeeds

• Intuitive picture involving only ground and first excited state

Let’s assume P6=NP ?

• Algorithm succeeds roughly 100% of the time

• Total runtime needs to be exponential in size of problem →
system needs to remain coherent for exponentially long time?

?For those unfamiliar with complexity theory, this is basically saying “let’s
assume that hard optimization problems exist”, most experts believe P6=NP

?for other approaches see: Crosson and Lidar, Nature Reviews Physics
volume 3, pages 466-489 (2021)



What can be done?
Restore coherence somehow

• Error correction, difficult to
do in continuous time, but
progress being made

• Low temperature dissipation
can restore coherence →
would have to be very low
temperature

• Have to mitigate errors for a
very long time

• Not the subject of this
presentation

image public domain from wikimedia commons

Succeed with low probability

• Total runtime is still
exponential in problem size

• Each run is short →
exponentially many needed
to hit right answer

• Exponentially low success
each run is conceptually
unsatisfying...

• ... but much less
demanding for coherence

• back to this later, simpler
setting first

Lottery



Start simple: continuous time quantum walk on spin glass

I Start with an equal positive superposition of all solutions,
|ω〉 = 1√

N

∑
i |i〉

I Evolve with a fixed Hamiltonian Hwalk = γHhop + Hproblem

I Hhop = −∑
i σ

x
i → superposition is ground state

I Hproblem =
∑

i ,j Ji ,jσ
z
i σ

z
j +

∑
i hiσ

z
i where hi and Ji ,j drawn

from the same Gaussian distribution

I Measure after random short period of time, repeat many times

0.02

0.06

0.10

P
(t
f
)

0 15 30 45 60
ωSKtf

0.05
0.10
0.15
0.20

P
(t
f
)

See Adam Callison et al 2019 New J. Phys. 21 123022 for details,
work with Adam Callison, Viv Kendon, and Florian Mintert



How is this a ‘walk’? How does it find solutions?
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I Hhop effectively forms a hypercube with a bitstring at each
vertex, probability amplitude ‘walks’ between different states

I Hproblem contributes phases which guide the walk

Energy is conserved 〈Hwalk〉t=0 = 〈Hwalk〉t>0 since the system starts
in the ground state of Hhop:
〈Hproblem〉t>0 − 〈Hproblem〉t=0 = 〈Hhop〉t=0 − 〈Hhop〉t>0 ≤ 0

Walk seeks out ‘good’ solutions!



How well this works, numerically extracting scaling
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I N = 2n possible bitstrings, one correct solution, runtime
scales as inverse probability

I Scaling of 1
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N ) and
1√
N

unstructured (Grover like) quantum search

The structure of the problem (correlations in bitstring energies) is
playing a role in the computational mechanism, otherwise could not
beat 1√

N
scaling



Compare to problems without correlations
Random Energy Model (REM): each bitstring is assigned a random
independent energy

I Dynamics become dominated by a single close avoided
crossing, require fine tuned γ, technically difficult, may not be
possible to find correct value

I Requires single long run for high success probability → need
long coherence time
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Compare to unstructured search

I Continuous time analog to Grover search

I Problem Hamiltonian is a single marked bitstring |m〉〈m|:
H(s) = −(1− s)

∑
i σ

x
i + s(1− |m〉〈m|)
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I Same optimal speedup as gate model finds solution in time√
N rather than N from classical guessing/exhaustive search

I Exponentially sensitive to parameter setting (values of s)

I Succeeds with O(1) probability after
√
N runtime

For a detailed study of AQC and QW, see Morley et. al. Phys. Rev.
A 99, 022339 (2019), for practical implementation, see Dodds et.
al. Phys. Rev. A 100, 032320 (2019)?

?bonus slides if extra time



(Why) is the effect of correlations interesting?

If the bitstring energies are uncorrelated no classical algorithm could
do better than random guessing, why?

Energy of one bitstring tells nothing about energy of neighbours

Complementary to the search-like mechanism usually attributed to
quantum algorithms
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Not just a ‘one off’ difference between spin glasses and REM, but
more general between correlated and uncorrelated energies



Rapid quenches?
Energy conservation argument extended to any monotonic (closed
system) quench

H(t) = A(t)Hdrive + B(t)Hproblem
A(t)

B(t)
≥ A(t + δt)

B(t + δt)
∀t

Sketch of proof:

1. Trotterize time evolution: A(t)→ A(t + δt) and
B(t)→ B(t + δt) and apply
|ψ(t + δt)〉 = exp(−iH(t)δt)|ψ(t)〉 in separate steps

2. Rescale time so that Hamiltonian always resembles (energy
conserving) quantum walk Heff (Γ(t)) = Γ(t)Hdrive + Hproblem

3. In rescaled version Γ(t) ≥ Γ(t + δt) (lowest 〈Hdrive〉 is −n) ∴
〈Heff (Γ(t))〉ψ(t) − Γ(t) n ≥ 〈Heff (Γ(t + δt))〉ψ(t) − Γ(t + δt) n

4. Because 〈Heff (Γ(t))〉ψ(t) ≥ −Γ(t) n ∀t , 〈Hproblem〉ψ(t) ≤ 0 ∀t

Details can be found in Callison et. al. PRX Quantum 2, 010338



A very general result!
For result to hold (to be better than random guessing on average):

1. Monotonic Γ(t) ≥ Γ(t + δt) where Γ(t) = A(t)
B(t)

2. Start in ground state of Hdrive

3. Driver not gapless → not a concern for real problems

What is allowed:

1. No limit on how fast algorithm runs

2. Discontinuities in Γ(t) are ok

3. Hdrive does not need to be diagonal in an orthogonal basis to
Hproblem → starting state can be biased



Intuitive example: two stage quantum walk

Perform a quantum walk at γ1, and than use result as an input state
for a second walk at γ2 < γ1
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I Energy expectations: Green= γ1,2〈Hdrive〉; Blue= 〈Hproblem〉 ;
Gold= γ1,2〈Hd〉+ 〈Hproblem〉

I Total energy conserved except for at dashed line where γ
decreases

I Non-instantaneous quench effectively infinite stage quantum
walk



Why is the rapid quench result important?

General, but rather weak:
Any monotonic quench at least as good as measuring the initial
state

1. Design protocols to maximize dynamics → don’t need to
worry about dynamics being counter-productive

2. A biased search can already start from a very good guess
more discussion on this later

3. Mechanism to understand dynamics very far from adiabatic
limit



Connection to gate model algorithms: Quantum
Alternating Operator Ansatz (QAOA)

I Apply? Hdriver and Hproblem sequentially rather than
simultaneously

I Can simulate quantum annealing in the limit of many
repetitions

I Machine learning usually used to optimise controls

I Recent work by others? shows optimal QAOA looks very
similar (but not identical) to simulated quantum annealing

I Is the (approximate) energy conservation mechanism the
reason for this behaviour?

?QAOA literature calls these mixer and phase separator, but I will use the
quantum annealing terminology to avoid confusion

?Brady et. al. arXiv:2107.01218, Phys. Rev. Lett. 126, 070505 (2021)



Quantifying dynamics in a two state subspace
Transfer coefficent, transfer between computational basis states:
T (jk) = 2Γ(t)|〈k|Hdrive|j〉|

2Γ(t)|〈k|Hdrive|j〉|+|∆jk | (where ∆jk is the total difference in

diagonal matrix elements) Blue in figure

Disequilibrium coefficient, amount which Hproblem breaks the initial
equilibrium:
D(jk), defined the same as T (jk), but in the diagonal basis of Hdrive

rather than the computational basis Gold in figure

χ(jk) = T (jk) D(jk) quantifies total dynamics Green in figure

Unlike spectral gap, these quantities can be efficiently calculated
for large problems!



Finding optimal annealing schedules

H(t) = A(t)Hdrive + B(t)Hproblem

I Define A(t) = (1− s(t)) and B(t) = s(t)

I Set ∂s
∂t ∝ 1

χ

I Compare to linear schedule s ∝ t for single SK instance
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Hybrid protocols using this mechanism?
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Known techniques:
Dissipative reverse annealing NC 2017 New J. Phys. 19 023024 as
implemented on D-Wave devices
Relies on dissipation, not suitable for coherent algorithms

Coherent reverse annealing Perdomo-Ortiz et. al. Quantum Inf
Process (2011) 10: 33. doi:10.1007/s11128-010-0168-z

Involves three separate Hamiltonians, not compatible with rapid
sweep proof in Callison et. al. PRX Quantum 2, 010338

Biased driver Hamiltonian Chinese Physics Letters, 30 1 010302
and Tobias Graß Phys. Rev. Lett. 123, 120501 (2019)

Compatible with proof in Callison et. al. PRX Quantum 2, 010338,
can apply the mechanisms discussed here



A subroutine for hybrid quantum/classical optimization

Basic requirement: needs to be able to incorporate outside informa-
tion to solve problem

I One way to do this → search preferentially around candidate
solution

How to do this experimentally: (dissipative) Reverse annealing

I Seed in guess solution on D-Wave quantum annealer

I Quantum fluctuations plus dissipation search locally

I See New J. Phys. 19 023024 (2017)



Obligatory slide: D-Wave controversy
Two separate controversies:

1) Are the dynamics actually quantum? Yes!

I Lots of evidence, most striking is simulation of extremely
quantum KT phase transition Nature 560 456–460 (2018)

I Classical models reproduce some behaviours, expected →
mean field approximation

2) Can it beat improve classical computing? Open question

I No conclusive speedup? demonstrated yet

I Not what this talk is about

I Currently largest scale device to study algorithmic application
of quantum mechanics

I Good science can be done regardless of answer to
question 2!

?For optimisation, there is some evidence of a speedup for simulation, King
et. al. Nature Communications 12, 1113 (2021)



Reverse annealing in algorithms (incomplete list)?

1. Start from one solution to find other solution (D-Wave
whitepaper 14-1018A-A)
I Finding other solution 150x more likely then forward

2. Search locally around classical solution (arχiv:1810.08584)
I Start from greedy search solution
I Speedup of 100x over forward annealing

3. Iterative search (arχiv:1808.08721)
I Iteratively increase search range until new solution found
I Forward annealing could not solve any, reverse solved most
I See also: arχiv:2007.05565

4. Quantum simulation(Nature 560 456–460 (2018))
I Seed next call with result from previous
I Seeding with previous state makes simulation possible

5. Monte Carlo and Genetic like algorithms
I Quantum assisted genetic algorithm QAGA (arχiv:1907.00707)
I Finds global optima quickly where other methods struggle
I Theoretical discussion (my work) (NJP 19, 2, 023024 (2017)

and arχiv:1609.05875)
?forward annealing= traditional non-hybrid method



Hybrid quantum/classical, what’s next?

1. More sophisticated algorithms
I Except for QAGA, all experiments have been very simple

algorithms
I Move to more complex ones based on current state of art

(particularly the state of the art for specific problems)
I Develop theoretical framework: inference primitive → NC Nat

Comput (2022). https://doi.org/10.1007/s11047-022-09905-2

2. Understand and improve protocols
I Understand how these protocols actually work under realistic

conditions



More on hybrid...

Fundamental question: When/how to use a call to a physical device
which is very powerful but also very constrained

Discussion so far has been under the context of quantum, but actu-
ally much more general → heterotic computing

F

Φ

a)

b)

c)

Many of the ideas from my work would equally apply to other pow-
erful optimisation subroutines

Interesting future work in taking these ideas outside of quantum
computing



Solving problems in a dissipative setting
Ising model gives us rich control to design energy landscapes, com-
pare behaviour of D-Wave quantum annealers with different noise
levels

  

  

  

True Minimum

Starting State

False Minimum

start

False Minimum 
(broad)

True minimum
(narrow)

Core idea: starting state near a true minima, and further away from
a false minima which would ‘trick’ forward annealing
dashed coupling Jt controls barrier between start and true minimum

Details in Chancellor and Kendon PRA 104, 012604 (2021)



Need more fluctuations on less noisy QPU

I Dissipation mediates reverse annealing local search, less
coupling to bath → energy dissipates more slowly

I For the same runtime more fluctuations (higher Γ) is needed

I Suggests that spin bath polarisation is not the dominant effect
here, otherwise noisier version would need higher Γ
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Increasing hold time τ allows more tunnelling out of the true mini-
mum at higher Γ (left: lower noise, right: higher)
doesn’t affect the height of the peak (important for modelling)



More exciting difference: higher peak with noisier QPU

Why is this exciting?

False minimum is further away, more tunnelling from start state
means longer range search with lower noise
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I Top left: lower noise true min probability, Right: higher,
bottom, peak values, bottom, peak value versus Jt

I As it gets harder to tunnel to the true minimum the difference
between the higher and lower noise QPUs grows



A simple model: initial branching then tunnelling

Pfalse(τ) = 1− [1− Rfalse] exp(−κτ)
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I Branching ratio Rfalse indeed higher on lower noise QPU(left
fit, squares on bottom)

I Don’t have time for full details, see Chancellor and Kendon
PRA 104, 012604 (2021)

I Confirms model, lowering noise causes more branching to
further local minima → longer range search



Effect of problem structure and encoding?

Consider higher-than-binary dis-
crete problems; appear often in real world optimisation, for example:

I A truck can go down any of three roads...

I A tasks can be scheduled at any of five times...

I A component can be placed any of seven places on a chip...

I Define two index objects:

xi ,α =

{
1 variable i takes value α

0 otherwise

I Discrete Quadratic models, (DQM), made from pairwise
interactions of x terms:

HDQM =
∑
i ,j

∑
α,β

D(i ,j ,α,β)xi ,αxj ,β

?Details in arχiv:2108.12004



Discrete variables into binary, three ways
Variable size=m

performance metric binary one-hot domain wall?

# binary variables dlog2(m)e m m − 1

# couplers 0 if m = 2n n ∈ Z
m (m − 1) m − 2

for encoding complicated otherwise

intra-variable connectivity N/A or complicated complete linear

maximum order
2 dlog2(m)e 2 2

needed for two variable interactions

Binary= assign bitstrings to configurations
One hot= constrain variables so exactly one can be 1
Domain wall= new encoding w/ better performance?

encoded value qubit configuration

0 1111

1 -1111

2 -1-111

3 -1-1-11

4 -1-1-1-1

1 1 1 1

-1 1 1 1

-1 -1 1 1

-1 -1 -1 1

-1 -1 -1 -1
?For details see: Chancellor, Quantum Sci. Technol. 4 045004
?Chen et. al. IEEE Transactions on Quantum Engineering 3102714 (2021)



Binary encoding

I A variable of size m can be encoded in dlog2(m)e qubits

I Arbitrary interactions require high order terms in Hamiltonian

I Only quadratic interactions → gadgets → auxilliary variables

I Fair counting needs to include auxilliary variables as well
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This is a losing proposition for general interactions?

?Binary may still be best for interactions with special structure, example,
variable multiplication: (for example Joseph et. al. Phys. Rev. A 103, 032433)



Comparing one-hot and domain-wall: colouring problems?

Simple test problem with structure: penalty between nodes if and
only if they are the same colour
Use natural structure of problem to ‘spread out’ embedding

Four colouring example, ‘layered’ structure in Domain wall (right),
no structure in one hot, (left)

three-colouring → randomly generated edges with 50% probability
k-colouring → twice as many nodes as colours, random edges with
75% probability

?see Chancellor, Quantum Sci. Technol. 4 045004



The results?

For both k and three colouring problems the domain-wall encoding
performs better on both Advantage and 2000Q D-Wave QPUs

three colouring (left), k-colouring (right)
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C=number of places same colour touches

Even looks like domain-wall on 2000Q out-performs one-hot on
Advantage!

Use hypothesis testing to verify that this is a statistically significant
result, test 100 instances on each and see how much each proces-
sor/encoding combination wins for all 6 combinations

?Chen et. al. IEEE Transactions on Quantum Engineering 3102714 (2021)



Hypothesis testing, three colour?

Green=statistically significant result (95% confidence)
Adv. dw/oh 2000Q dw/oh dw Adv./2000Q oh Adv./2000Q (dw, Adv.)/(oh, 2000Q) (dw, 2000Q)/(oh, Adv.)

5 node (b,w) 0 0 0 0 0 0 0 0 0 0 0 0

5 node p

10 node (b,w) 42 0 37 0 2 0 19 21 39 0 40 0

10 node p 2.27× 10−13 7.28× 10−12 2.50× 10−1 6.82× 10−1 1.82× 10−12 9.09× 10−13

15 node (b,w) 85 2 95 3 32 34 70 22 94 1 91 2

15 node p 2.47× 10−23 4.95× 10−25 6.44× 10−1 2.67× 10−7 2.42× 10−27 4.41× 10−25

20 node (b,w) 99 0 100 0 43 41 94 3 100 0 93 2

20 node p 1.58× 10−30 7.89× 10−31 4.57× 10−1 9.60× 10−25 7.89× 10−31 1.15× 10−25

25 node (b,w) 100 0 FAIL 66 20 FAIL FAIL 98 2

25 node p 7.89× 10−31 3.33× 10−7 3.98× 10−27

30 node (b,w) 100 0 FAIL 72 20 FAIL FAIL 97 2

30 node p 7.89× 10−31 2.30× 10−8 7.81× 10−27

35 node (b,w) 100 0 FAIL FAIL FAIL FAIL FAIL FAIL

35 node p 7.89× 10−31

40 node(b,w) 100 0 FAIL FAIL FAIL FAIL FAIL FAIL

40 node p 7.89× 10−31

I Domain-wall 2000Q beats one hot-Advantage (in a
statistically significant way)

I Trend continue up to size where no longer possible to embed
in 2000Q (FAIL)

I Otherwise results are expected → 2000Q worse than
Advantage, one hot worse than domain wall

?Chen et. al. IEEE Transactions on Quantum Engineering 3102714 (2021)



Hypothesis testing, k colour?

Green/red=statistically significant result (95% confidence)
Adv. dw/oh 2000Q dw/oh dw Adv./2000Q oh Adv./2000Q (dw, Adv.)/(oh, 2000Q) (dw, 2000Q)/(oh, Adv.)

3 color (b,w) 0 0 0 0 0 0 0 0 0 0 0 0

3 color p

4 color (b,w) 34 1 37 2 11 3 26 16 44 1 33 7

4 color p 1.05× 10−9 1.42× 10−9 2.87× 10−2 8.21× 10−2 1.31× 10−12 2.11× 10−5

5 color (b,w) 91 1 78 1 34 18 23 59 88 1 91 1

5 color p 1.88× 10−26 1.32× 10−22 1.82× 10−2 ≈ 1 1.45× 10−25 1.88× 10−26

6 color(b,w) 99 0 FAIL 59 15 FAIL FAIL 99 0

6 color p 1.58× 10−30 1.28× 10−7 1.58× 10−30

7 color(b,w) 92 0 FAIL FAIL FAIL FAIL FAIL FAIL

7 color p 2.02× 10−28

I Domain-wall 2000Q beats one-hot Advantage (in a
statistically significant way)

I Trend continue up to size where no longer possible to embed
in 2000Q (FAIL)

I One case where 2000Q beats advantage for the same
decoding (one-hot)?

?This goes away when the decoding strategy for broken chains is changed so
probably an artefact of majority vote decoding

?Chen et. al. IEEE Transactions on Quantum Engineering 3102714 (2021)



Same pattern holds for probability to find optimal?

three colouring (left), k-colouring (right)
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Note that each run was only performed with 100 reads, better results
could be attained with more reads

All QPU-encoding combinations found optimal solution at smallest
size → explains no “winners” in hypothesis testing

?Chen et. al. IEEE Transactions on Quantum Engineering 3102714 (2021)



Digging deeper into performance: encoding failures?

What fraction of solutions have all one-hot/domain-wall constraints
satisfied

three colouring (left), k-colouring (right)
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Domain-wall constraints are much less “fragile” especially with only
three colours, makes a much bigger difference than processor struc-
ture

?Chen et. al. IEEE Transactions on Quantum Engineering 3102714 (2021)



Quadratic Assignment Problem (QAP)

Assign m facilities to m locations such that a single facility is only
assigned to one location and vice-versa

Bipartite
Matching

=

Complete 
Graph 

Coloring

I General (hard) version → pairs of assignments are weighted,
we use unweighted → not hard, but symmetry and large
degeneracy useful for analysis

I Can be thought of as a colouring problem on an m-node fully
connected graph

I m!-fold degenerate ground state



Experimental tests (unweighed assignment)

Run on D-Wave Advantage annealer 10 embeddings at each size
with 10, 000 reads for total of 100, 000 reads at each size (default
settings otherwise)
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Able to find all feasibles up until about size 6, then both struggle,
but domain-wall encoding performs much better.



Rate of feasible solutions

Stars represent fractions of returned solutions which are feasible
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At largest size (n = 10) domain-wall encoding finds solutions while
one-hot finds none.



One explanation: thermal excitations

Symmetry of problem means Metropolis algorithm converges
quickly, efficient thermal sampling
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Probability of feasible solution is better at higher temperature with
domain-wall encoding, makes sense one fewer qubit → smaller
solution space



Dynamic range squeezing

Minor embedding chains need to be stronger for larger problems →
less range left for problem, effectively higher temperature ?
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?we use default “uniform torque compensation” method



Thermal equilibrium model

Assuming an energy scale of ≈ 5 GHz at the freezing point we find
feasible probability for a purely thermal model
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I Shows same crossover as real data
I Not in the same location, but...

1. Estimate of energy scale is rough
2. Not all sizes will freeze at the same time each will have

different scales



Estimate energy scale
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1. Assume “frozen in” thermal distribution → Kibble-Zurek style
approximation

2. Known physical temperature and experimental success
probabilities

3. Back calculate energy scale (B) and therefore freeze point (s)

4. Verify that quantum fluctuations (A) can be safely ignored at
freeze point



Effective temperature and freeze point
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I Already taken into account embedding strength

I Domain-wall version effectively sampled at lower temperature
↔ later freezing

Encoding has a strong effect on the dynamics of how the
problem is solved



Why might this be true?

I One hot value cannot be changed by flipping a single binary
variable

I Domain wall can therefore easier for transverse field to update
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Need to consider underlying physics with encoding



Want to try it yourself?

Python code to create domain wall encodings available at
https://collections.durham.ac.uk/: “Domain wall encoding of in-
teger variables for quantum annealing and QAOA [dataset]”?

?https://doi.org/10.15128/r27d278t029



bonus slides



Aside: Implementing unstructured search dynamics ?

I Naively requires implementation of all 2n Pauli strings →
−|0〉〈0| =

∏
i

1
2 (1− σz

i ) not practical

I However auxilliary qubits can be used to ‘count’, spins ones in
a configuration → Apply penalty to counting spins and
implement at second order of perturbation theory
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001|110
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100|110

101|100

011|100

110|100

111|000

Embeds a hypercube in a hypercube of twice the dimension Dodds
et. al. Phys. Rev. A 100, 032320 (2019)

?marked state of |0〉 w.l.o.g.



What is required? (last slide on aside) ?

Need:

I Nearly all to all interactions, but only two body σz
i σ

z
j , don’t

need any higher order

I Single body σz
i and σx

i terms

I ... and that is it, nothing else required, we propose Rydbergs,
but maybe one of you has a different idea...
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?Dodds et. al. Phys. Rev. A 100, 032320 (2019)


