Where We Are and Where We Are Going With Quantum Annealing and Related Algorithms

Jülich Spring School 2023

Nicholas Chancellor

June, 242022

Potentially relevant UK projects for this audience

Collaborative computational project on quantum computing (CCP-QC)

- Work with other CCPs (academic projects) to find uses fro quantum computing within scientific research
- Idea is to use quantum computing to solve hard problems which come up in academic research rather than industry
- https://ccp-qc.ac.uk/

Quantum Enhanced and Verified Exascale Computing (QEVEC)

- Work on how quantum coprocessors can (eventually) support exascale computing
- Multiple projects looking at a variety of applications
- https://excalibur.ac.uk/projects/qevec/

Contact Viv Kendon at viv.kendon@strath.ac.uk if you are interested in potential collaborations

Please Interrupt With Questions!

- I am generally very "anti-slides" when it comes to teaching...
- but in this case there are too many plots to show to do it any other way
- The main reason: I think it makes it more intimidating to ask questions and go "off script"
- If you have a question your classmates are probably wondering the same thing
- Fine if we don't get through all the slides or have to skip details

Structure of This Lecture

- Setting the scene
- Big picture: quantum computing and hybrid algorithms
- (Why) should I care about quantum annealing?
- Adiabatic quantum computing and beyond
- Strengths of this concept
- How and why we need to go beyond the adiabatic theorem
- Hybrid (quantum/classical) computing in quantum annealing
- Different variants of reverse annealing
- What this gives us algorithmically
- Encoding and interaction graphs
- Example of importance: domain-wall encoding

The importance of hybrid algorithms*

In the near term:

- Quantum computers may be very powerful in some ways but...
- Will remain very limited in others

For them to be genuinely useful, we must take advantage of the computational power, while circumventing the limitations

- This naturally indicates a coprocessor arrangement
- Fundamentally hybrid \rightarrow computational model involves both classical and quantum steps
- This is different from just being supported by classical computation, see paper for full details

[^0]
This isn't a new idea in computing*

Classical computing already makes heavy use of coprocessors:

- Graphics cards \rightarrow good for highly parallel processing
- Application specific integrated circuits
- Neuromorphic devices \rightarrow structures similar to natural neural networks

Wikimedia commons, created by user Mmanss, CC attribution share-alike

- No reason to think the same logic won't apply for quantum
- Needs fast interconnects and collocation with classical (HPC) resources (Jülich is a leader on this front)

[^1]
Adiabatic quantum computing

Traditional picture:

- Map an NP-hard optimization problem to a Hamiltonian, unknown ground state is solution
- Slowly change from a (driver) Hamiltonian with an easily prepared ground state to problem Hamiltonian
- Adiabatic theorem of quantum mechanics \rightarrow success probability arbitrarily close to 100% by running long enough

$$
H(t)=A(t) H_{\text {driver }}+B(t) H_{\text {problem }}
$$

Example of Ising problem mapping *

Have:

- Binary variables $Z_{i} \in\{-1,1\}$
- Minimisation over Hamiltonian made of single and pairwise terms $\mathrm{H}_{\text {Ising }}=\sum_{i} h_{i} Z_{i}+\sum_{j>i} J_{i, j} Z_{i} Z_{j}$
Want:
- Maximum independent set: how many vertexes on a graph can we colour so none touch? \rightarrow NP hard

Method:

1. For an edge between vertex i and j add $Z_{i}+Z_{j}+Z_{i} Z_{j} \rightarrow$ penalizes colouring $(Z=1)$ adacent vertexes
2. Add $-\lambda Z_{i}$ to reward coloured vertexes $(0<\lambda<1)$
*Taken from the notes of a physics level 3 computing project I wrote, full notes at: http://nicholas-chancellor.me/QOpt_project_final.pdf

Minor embedding

- Strong 'ferromagnetic' $\left(-Z_{i} Z_{j}\right)$ coupling energetically penalizes variables disagreeing
- If strong enough than entire 'chain' acts as a single variable
- Mathematically corresponds to mapping one graph to graph minors of another

Can embed arbitrary graphs into quasi-planar hardware graph with polynomial (n^{2} for fully connected) overhead \rightarrow Ising model restricted to hardware graph is also NP-hard

In practice this leads to a large overhead \rightarrow important consideration for solving real problems

Advantages and disadvantages of the adiabatic picture

Theoretically satisfying

- Algorithm is effectively deterministic \rightarrow "always" succeeds
- Intuitive picture involving only ground and first excited state

Let's assume $\mathrm{P} \neq \mathrm{NP}$ *

- Algorithm succeeds roughly 100% of the time
- Total runtime needs to be exponential in size of problem \rightarrow system needs to remain coherent for exponentially long time*
*For those unfamiliar with complexity theory, this is basically saying "let's assume that hard optimization problems exist", most experts believe $P \neq N P$
*for other approaches see: Crosson and Lidar, Nature Reviews Physics volume 3, pages 466-489 (2021)

What can be done?

Restore coherence somehow

- Error correction, difficult to do in continuous time, but progress being made
- Low temperature dissipation can restore coherence \rightarrow would have to be very low temperature
- Have to mitigate errors for a very long time
- Not the subject of this presentation

Succeed with low probability

- Total runtime is still exponential in problem size
- Each run is short \rightarrow exponentially many needed to hit right answer
- Exponentially low success each run is conceptually unsatisfying...
- ... but much less demanding for coherence
- back to this later, simpler setting first

Lottery

Start simple: continuous time quantum walk on spin glass

- Start with an equal positive superposition of all solutions,

$$
|\omega\rangle=\frac{1}{\sqrt{N}} \sum_{i}|i\rangle
$$

- Evolve with a fixed Hamiltonian $H_{\text {walk }}=\gamma H_{\text {hop }}+H_{\text {problem }}$
- $H_{\text {hop }}=-\sum_{i} \sigma_{i}^{\times} \rightarrow$ superposition is ground state
- $H_{\text {problem }}=\sum_{i, j} J_{i, j} \sigma_{i}^{z} \sigma_{j}^{z}+\sum_{i} h_{i} \sigma_{i}^{z}$ where h_{i} and $J_{i, j}$ drawn from the same Gaussian distribution
- Measure after random short period of time, repeat many times

See Adam Callison et al 2019 New J. Phys. 21123022 for details, work with Adam Callison, Viv Kendon, and Florian Mintert

How is this a 'walk'? How does it find solutions?

(111)

- $H_{\text {hop }}$ effectively forms a hypercube with a bitstring at each vertex, probability amplitude 'walks' between different states
- $H_{\text {problem }}$ contributes phases which guide the walk

Energy is conserved $\left\langle H_{\text {walk }}\right\rangle_{t=0}=\left\langle H_{\text {walk }}\right\rangle_{t>0}$ since the system starts in the ground state of $H_{\text {hop }}$:
$\left\langle H_{\text {problem }}\right\rangle_{t>0}-\left\langle H_{\text {problem }}\right\rangle_{t=0}=\left\langle H_{\text {hop }}\right\rangle_{t=0}-\left\langle H_{\text {hop }}\right\rangle_{t>0} \leq 0$
Walk seeks out 'good’ solutions!

How well this works, numerically extracting scaling

- $N=2^{n}$ possible bitstrings, one correct solution, runtime scales as inverse probability
- Scaling of $\frac{1}{N^{0.417}}$ better than both classical guessing $\left(\frac{1}{N}\right)$ and $\frac{1}{\sqrt{N}}$ unstructured (Grover like) quantum search

The structure of the problem (correlations in bitstring energies) is playing a role in the computational mechanism, otherwise could not beat $\frac{1}{\sqrt{N}}$ scaling

Compare to problems without correlations

Random Energy Model (REM): each bitstring is assigned a random independent energy

- Dynamics become dominated by a single close avoided crossing, require fine tuned γ, technically difficult, may not be possible to find correct value
- Requires single long run for high success probability \rightarrow need long coherence time

Compare to unstructured search

- Continuous time analog to Grover search
- Problem Hamiltonian is a single marked bitstring $|m\rangle\langle m|$:

$$
H(s)=-(1-s) \sum_{i} \sigma_{i}^{\times}+s(1-|m\rangle\langle m|)
$$

- Same optimal speedup as gate model finds solution in time \sqrt{N} rather than N from classical guessing/exhaustive search
- Exponentially sensitive to parameter setting (values of s)
- Succeeds with $O(1)$ probability after \sqrt{N} runtime

For a detailed study of AQC and QW, see Morley et. al. Phys. Rev. A 99, 022339 (2019), for practical implementation, see Dodds et. al. Phys. Rev. A 100, 032320 (2019) ${ }^{\star}$

[^2]
(Why) is the effect of correlations interesting?

If the bitstring energies are uncorrelated no classical algorithm could do better than random guessing, why?

Energy of one bitstring tells nothing about energy of neighbours
Complementary to the search-like mechanism usually attributed to quantum algorithms

Not just a 'one off' difference between spin glasses and REM, but more general between correlated and uncorrelated energies

Rapid quenches?

Energy conservation argument extended to any monotonic (closed system) quench

$$
H(t)=A(t) H_{\text {drive }}+B(t) H_{\text {problem }} \frac{A(t)}{B(t)} \geq \frac{A(t+\delta t)}{B(t+\delta t)} \forall_{t}
$$

Sketch of proof:

1. Trotterize time evolution: $A(t) \rightarrow A(t+\delta t)$ and $B(t) \rightarrow B(t+\delta t)$ and apply $|\psi(t+\delta t)\rangle=\exp (-i H(t) \delta t)|\psi(t)\rangle$ in separate steps
2. Rescale time so that Hamiltonian always resembles (energy conserving) quantum walk $H_{\text {eff }}(\Gamma(t))=\Gamma(t) H_{\text {drive }}+H_{\text {problem }}$
3. In rescaled version $\Gamma(t) \geq \Gamma(t+\delta t)$ (lowest $\left\langle H_{\text {drive }}\right\rangle$ is $\left.-n\right) \therefore$

$$
\left\langle H_{e f f}(\Gamma(t))\right\rangle_{\psi(t)}-\Gamma(t) n \geq\left\langle H_{e f f}(\Gamma(t+\delta t))\right\rangle_{\psi(t)}-\Gamma(t+\delta t) n
$$

4. Because $\left\langle H_{\text {eff }}(\Gamma(t))\right\rangle_{\psi(t)} \geq-\Gamma(t) n \forall_{t},\left\langle H_{\text {problem }}\right\rangle_{\psi(t)} \leq 0 \forall_{t}$

Details can be found in Callison et. al. PRX Quantum 2, 010338

A very general result!

For result to hold (to be better than random guessing on average):

1. Monotonic $\Gamma(t) \geq \Gamma(t+\delta t)$ where $\Gamma(t)=\frac{A(t)}{B(t)}$
2. Start in ground state of $H_{\text {drive }}$
3. Driver not gapless \rightarrow not a concern for real problems

What is allowed:

1. No limit on how fast algorithm runs
2. Discontinuities in $\Gamma(t)$ are ok
3. $H_{\text {drive }}$ does not need to be diagonal in an orthogonal basis to $H_{\text {problem }} \rightarrow$ starting state can be biased

Intuitive example: two stage quantum walk

Perform a quantum walk at γ_{1}, and than use result as an input state for a second walk at $\gamma_{2}<\gamma_{1}$

- Energy expectations: Green $=\gamma_{1,2}\left\langle H_{\text {drive }}\right\rangle ;$ Blue $=\left\langle H_{\text {problem }}\right\rangle$; Gold $=\gamma_{1,2}\left\langle H_{d}\right\rangle+\left\langle H_{\text {problem }}\right\rangle$
- Total energy conserved except for at dashed line where γ decreases
- Non-instantaneous quench effectively infinite stage quantum walk

Why is the rapid quench result important?

General, but rather weak:
Any monotonic quench at least as good as measuring the initial state

1. Design protocols to maximize dynamics \rightarrow don't need to worry about dynamics being counter-productive
2. A biased search can already start from a very good guess more discussion on this later
3. Mechanism to understand dynamics very far from adiabatic limit

Connection to gate model algorithms: Quantum Alternating Operator Ansatz (QAOA)

- Apply* $H_{\text {driver }}$ and $H_{\text {problem }}$ sequentially rather than simultaneously
- Can simulate quantum annealing in the limit of many repetitions
- Machine learning usually used to optimise controls
- Recent work by others* shows optimal QAOA looks very similar (but not identical) to simulated quantum annealing
- Is the (approximate) energy conservation mechanism the reason for this behaviour?

[^3]
Quantifying dynamics in a two state subspace

Transfer coefficent, transfer between computational basis states: $T^{(j k)}=\frac{\left.2 \Gamma(t)\left|\langle k| H_{\text {drive }}\right| j\right\rangle \mid}{2 \Gamma(t)\left|\left\langle k \mid H_{\text {drive }} j\right\rangle\right|+\left|\Delta_{j k}\right|}$ (where $\Delta_{j k}$ is the total difference in diagonal matrix elements) Blue in figure

Disequilibrium coefficient, amount which $H_{\text {problem }}$ breaks the initial equilibrium:
$D^{(j k)}$, defined the same as $T^{(j k)}$, but in the diagonal basis of $H_{\text {drive }}$ rather than the computational basis Gold in figure
$\chi^{(j k)}=T^{(j k)} D^{(j k)}$ quantifies total dynamics Green in figure

Unlike spectral gap, these quantities can be efficiently calculated for large problems!

Finding optimal annealing schedules

$$
H(t)=A(t) H_{\text {drive }}+B(t) H_{\text {problem }}
$$

- Define $A(t)=(1-s(t))$ and $B(t)=s(t)$
- Set $\frac{\partial s}{\partial t} \propto \frac{1}{\bar{\chi}}$
- Compare to linear schedule $s \propto t$ for single SK instance

Heuristic performs better than linear schedule!

Hybrid protocols using this mechanism?

Known techniques:
Dissipative reverse annealing NC 2017 New J. Phys. 19023024 as implemented on D-Wave devices
Relies on dissipation, not suitable for coherent algorithms
Coherent reverse annealing Perdomo-Ortiz et. al. Quantum Inf Process (2011) 10: 33. doi:10.1007/s11128-010-0168-z
Involves three separate Hamiltonians, not compatible with rapid sweep proof in Callison et. al. PRX Quantum 2, 010338
Biased driver Hamiltonian Chinese Physics Letters, 301010302 and Tobias Graß Phys. Rev. Lett. 123, 120501 (2019)
Compatible with proof in Callison et. al. PRX Quantum 2, 010338 , can apply the mechanisms discussed here

A subroutine for hybrid quantum/classical optimization

Basic requirement: needs to be able to incorporate outside information to solve problem

- One way to do this \rightarrow search preferentially around candidate solution

How to do this experimentally: (dissipative) Reverse annealing

- Seed in guess solution on D-Wave quantum annealer
- Quantum fluctuations plus dissipation search locally
- See New J. Phys. 19023024 (2017)

Obligatory slide: D-Wave controversy

Two separate controversies:

1) Are the dynamics actually quantum? Yes!

- Lots of evidence, most striking is simulation of extremely quantum KT phase transition Nature 560 456-460 (2018)
- Classical models reproduce some behaviours, expected \rightarrow mean field approximation

2) Can it beat improve classical computing? Open question

- No conclusive speedup* demonstrated yet
- Not what this talk is about
- Currently largest scale device to study algorithmic application of quantum mechanics
- Good science can be done regardless of answer to question 2!
*For optimisation, there is some evidence of a speedup for simulation, King et. al. Nature Communications 12, 1113 (2021)

Reverse annealing in algorithms (incomplete list)*

1. Start from one solution to find other solution (D-Wave whitepaper 14-1018A-A)

- Finding other solution 150 x more likely then forward

2. Search locally around classical solution (arұiv:1810.08584)

- Start from greedy search solution
- Speedup of 100x over forward annealing

3. Iterative search (ar $\chi \mathrm{iv}: 1808.08721$)

- Iteratively increase search range until new solution found
- Forward annealing could not solve any, reverse solved most
- See also: ar iv:2007.05565

4. Quantum simulation(Nature 560 456-460 (2018))

- Seed next call with result from previous
- Seeding with previous state makes simulation possible

5. Monte Carlo and Genetic like algorithms

- Quantum assisted genetic algorithm QAGA (ar χ iv:1907.00707)
- Finds global optima quickly where other methods struggle
- Theoretical discussion (my work) (NJP 19, 2, 023024 (2017) and arziv:1609.05875)
*forward annealing= traditional non-hybrid method

Hybrid quantum/classical, what's next?

1. More sophisticated algorithms

- Except for QAGA, all experiments have been very simple algorithms
- Move to more complex ones based on current state of art (particularly the state of the art for specific problems)
- Develop theoretical framework: inference primitive \rightarrow NC Nat Comput (2022). https://doi.org/10.1007/s11047-022-09905-2

2. Understand and improve protocols

- Understand how these protocols actually work under realistic conditions

More on hybrid...

Fundamental question: When/how to use a call to a physical device which is very powerful but also very constrained

Discussion so far has been under the context of quantum, but actually much more general \rightarrow heterotic computing

Many of the ideas from my work would equally apply to other powerful optimisation subroutines
Interesting future work in taking these ideas outside of quantum computing

Solving problems in a dissipative setting

Ising model gives us rich control to design energy landscapes, compare behaviour of D-Wave quantum annealers with different noise levels

Core idea: starting state near a true minima, and further away from a false minima which would 'trick' forward annealing dashed coupling J_{t} controls barrier between start and true minimum

Details in Chancellor and Kendon PRA 104, 012604 (2021)

Need more fluctuations on less noisy QPU

- Dissipation mediates reverse annealing local search, less coupling to bath \rightarrow energy dissipates more slowly
- For the same runtime more fluctuations (higher Γ) is needed
- Suggests that spin bath polarisation is not the dominant effect here, otherwise noisier version would need higher Γ

Increasing hold time τ allows more tunnelling out of the true minimum at higher Γ (left: lower noise, right: higher) doesn't affect the height of the peak (important for modelling)

More exciting difference: higher peak with noisier QPU

Why is this exciting?
False minimum is further away, more tunnelling from start state means longer range search with lower noise

- Top left: lower noise true min probability, Right: higher, bottom, peak values, bottom, peak value versus J_{t}
- As it gets harder to tunnel to the true minimum the difference between the higher and lower noise QPUs grows

A simple model: initial branching then tunnelling

$$
P_{\text {false }}(\tau)=1-\left[1-R_{\text {false }}\right] \exp (-\kappa \tau)
$$

- Branching ratio $R_{\text {false }}$ indeed higher on lower noise QPU(left fit, squares on bottom)
- Don't have time for full details, see Chancellor and Kendon PRA 104, 012604 (2021)
- Confirms model, lowering noise causes more branching to further local minima \rightarrow longer range search

Effect of problem structure and encoding*

Consider higher-than-binary discrete problems; appear often in real world optimisation, for example:

- A truck can go down any of three roads...
- A tasks can be scheduled at any of five times...
- A component can be placed any of seven places on a chip...
- Define two index objects:

$$
x_{i, \alpha}= \begin{cases}1 & \text { variable } i \text { takes value } \alpha \\ 0 & \text { otherwise }\end{cases}
$$

- Discrete Quadratic models, (DQM), made from pairwise interactions of x terms:

$$
H_{\mathrm{DQM}}=\sum_{i, j} \sum_{\alpha, \beta} D_{(i, j, \alpha, \beta)} x_{i, \alpha} x_{j, \beta}
$$

[^4]
Discrete variables into binary, three ways

Variable size $=m$

performance metric	binary	one-hot	domain wall *
\# binary variables	$\left\lceil\log _{2}(m)\right\rceil$	m	$m-1$
$\#$ couplers for encoding	0 if $m=2^{n} n \in \mathbb{Z}$ complicated otherwise	$m(m-1)$	$m-2$
intra-variable connectivity	N / A or complicated	complete	linear
maximum order needed for two variable interactions	$2\left\lceil\log _{2}(m)\right\rceil$	2	2

Binary $=$ assign bitstrings to configurations
One hot= constrain variables so exactly one can be 1
Domain wall= new encoding w/ better performance*

encoded value	qubit configuration
0	1111
1	-1111
2	$-1-111$
3	$-1-1-11$
4	$-1-1-1-1$

*For details see: Chancellor, Quantum Sci. Technol. 4045004
*Chen et. al. IEEE Transactions on Quantum Engineering 3102714 (2021)

Binary encoding

- A variable of size m can be encoded in $\left\lceil\log _{2}(m)\right\rceil$ qubits
- Arbitrary interactions require high order terms in Hamiltonian
- Only quadratic interactions \rightarrow gadgets \rightarrow auxilliary variables
- Fair counting needs to include auxilliary variables as well

This is a losing proposition for general interactions*

[^5]
Comparing one-hot and domain-wall: colouring problems^

Simple test problem with structure: penalty between nodes if and only if they are the same colour
Use natural structure of problem to 'spread out' embedding
Four colouring example, 'layered' structure in Domain wall (right), no structure in one hot, (left)

three-colouring \rightarrow randomly generated edges with 50% probability k-colouring \rightarrow twice as many nodes as colours, random edges with 75\% probability

[^6]
The results^

For both k and three colouring problems the domain-wall encoding performs better on both Advantage and 2000Q D-Wave QPUs
three colouring (left), k-colouring (right)

$\mathrm{C}=$ number of places same colour touches
Even looks like domain-wall on 2000Q out-performs one-hot on Advantage!
Use hypothesis testing to verify that this is a statistically significant result, test 100 instances on each and see how much each processor/encoding combination wins for all 6 combinations

[^7]
Hypothesis testing, three colour*

Green=statistically significant result (95\% confidence)

- Domain-wall 2000Q beats one hot-Advantage (in a statistically significant way)
- Trend continue up to size where no longer possible to embed in 2000Q (FAIL)
- Otherwise results are expected $\rightarrow 2000$ Q worse than Advantage, one hot worse than domain wall
*Chen et. al. IEEE Transactions on Quantum Engineering 3102714 (2021)

Hypothesis testing, k colour*

Green/red=statistically significant result (95\% confidence)

	Adv. dw/oh		2000Q dw/oh		dw Adv./2000Q		oh Adv./2000Q		(dw, Adv.)/(oh, 2000Q)		(dw, 2000Q)/(oh, Adv.)	
3 color (b,w)	0	0	0	0	0	0	0	0	0	0	0	0
3 color p												
4 color (b,w)	34	1	37	2	11	3	26	16	44	1	33	7
4 color p	1.05×10^{-9}		1.42×10^{-9}		2.87×10^{-2}		8.21×10^{-2}		1.31×10^{-12}		2.11×10^{-5}	
5 color (b,w)	91	1	78	1	34	18	23	59	88	1	91	1
5 color p	1.88×10^{-26}		1.32×10^{-22}		1.82×10^{-2}		≈ 1		1.45×10^{-25}		1.88×10^{-26}	
6 color(b,w)	99	0		FAIL	59	15		FAIL		FAIL	99	0
6 color p	1.58×10^{-30}		1.28×10^{-7}									
7 color(b,w)	92	0	FAIL	FAIL		FAIL		FAIL		FAIL	FAIL	
7 color p	2.02×10^{-28}											

- Domain-wall 2000Q beats one-hot Advantage (in a statistically significant way)
- Trend continue up to size where no longer possible to embed in 2000Q (FAIL)
- One case where 2000Q beats advantage for the same decoding (one-hot) ${ }^{\star}$
*This goes away when the decoding strategy for broken chains is changed so probably an artefact of majority vote decoding
*Chen et. al. IEEE Transactions on Quantum Engineering 3102714 (2021) ミ

Same pattern holds for probability to find optimal ${ }^{\star}$

three colouring (left), k-colouring (right)

Note that each run was only performed with 100 reads, better results could be attained with more reads

All QPU-encoding combinations found optimal solution at smallest size \rightarrow explains no "winners" in hypothesis testing

[^8]
Digging deeper into performance: encoding failures ${ }^{\star}$

What fraction of solutions have all one-hot/domain-wall constraints satisfied
three colouring (left), k-colouring (right)

Domain-wall constraints are much less "fragile" especially with only three colours, makes a much bigger difference than processor structure

[^9]
Quadratic Assignment Problem (QAP)

Assign m facilities to m locations such that a single facility is only assigned to one location and vice-versa

- General (hard) version \rightarrow pairs of assignments are weighted, we use unweighted \rightarrow not hard, but symmetry and large degeneracy useful for analysis
- Can be thought of as a colouring problem on an m-node fully connected graph
- m!-fold degenerate ground state

Experimental tests (unweighed assignment)

Run on D-Wave Advantage annealer 10 embeddings at each size with 10,000 reads for total of 100,000 reads at each size (default settings otherwise)

Able to find all feasibles up until about size 6, then both struggle, but domain-wall encoding performs much better.

Rate of feasible solutions

Stars represent fractions of returned solutions which are feasible

At largest size ($n=10$) domain-wall encoding finds solutions while one-hot finds none.

One explanation: thermal excitations

Symmetry of problem means Metropolis algorithm converges quickly, efficient thermal sampling

Probability of feasible solution is better at higher temperature with domain-wall encoding, makes sense one fewer qubit \rightarrow smaller solution space

Dynamic range squeezing

Minor embedding chains need to be stronger for larger problems \rightarrow less range left for problem, effectively higher temperature *

*we use default "uniform torque compensation" method

Thermal equilibrium model

Assuming an energy scale of $\approx 5 \mathrm{GHz}$ at the freezing point we find feasible probability for a purely thermal model

- Shows same crossover as real data
- Not in the same location, but...

Estimate of energy scale is rough
Not all sizes will freeze at the same time each will have different scales

Estimate energy scale

Assume "frozen in" thermal distribution \rightarrow Kibble-Zurek style approximation
Known physical temperature and experimental success probabilities
Back calculate energy scale (B) and therefore freeze point (s) Verify that quantum fluctuations (A) can be safely ignored at freeze point

Effective temperature and freeze point

- Already taken into account embedding strength
- Domain-wall version effectively sampled at lower temperature \leftrightarrow later freezing

Encoding has a strong effect on the dynamics of how the problem is solved

Why might this be true?

- One hot value cannot be changed by flipping a single binary variable
- Domain wall can therefore easier for transverse field to update

Need to consider underlying physics with encoding

Want to try it yourself?

Python code to create domain wall encodings available at https://collections.durham.ac.uk/: "Domain wall encoding of integer variables for quantum annealing and QAOA [dataset]"*

[^10]
bonus slides

Aside: Implementing unstructured search dynamics *

- Naively requires implementation of all 2^{n} Pauli strings \rightarrow $-|0\rangle\langle 0|=\prod_{i} \frac{1}{2}\left(1-\sigma_{i}^{z}\right)$ not practical
- However auxilliary qubits can be used to 'count', spins ones in a configuration \rightarrow Apply penalty to counting spins and implement at second order of perturbation theory

Embeds a hypercube in a hypercube of twice the dimension Dodds et. al. Phys. Rev. A 100, 032320 (2019)

[^11]
What is required? (last slide on aside) *

Need:

- Nearly all to all interactions, but only two body $\sigma_{i}^{z} \sigma_{j}^{z}$, don't need any higher order
- Single body σ_{i}^{z} and σ_{i}^{x} terms
- ... and that is it, nothing else required, we propose Rydbergs, but maybe one of you has a different idea...

Perturbatively recover simple search dynamics

[^12]
[^0]: *see: Callison and Chancellor Phys. Rev. A 106, 010101 (2022)

[^1]: *see: Callison and Chancellor Phys. Rev. A 106, 010101 (2022)

[^2]: *bonus slides if extra time

[^3]: *QAOA literature calls these mixer and phase separator, but I will use the quantum annealing terminology to avoid confusion
 *Brady et. al. arXiv:2107.01218, Phys. Rev. Lett. 126, 070505 (2021)

[^4]: *Details in ar χ iv:2108.12004

[^5]: *Binary may still be best for interactions with special structure, example, variable multiplication: (for example Joseph et. al. Phys. Rev. A 103, 032433)

[^6]: *see Chancellor, Quantum Sci. Technol. 4045004

[^7]: *Chen et. al. IEEE Transactions on Quantum Engineering.3102714 (2021) 三

[^8]: *Chen et. al. IEEE Transactions on Quantum Engineering 3102714 (2021)

[^9]: *Chen et. al. IEEE Transactions on Quantum Engineering 3102714 (2021)

[^10]: *https://doi.org/10.15128/r27d278t029

[^11]: *marked state of $|0\rangle$ w.l.o.g.

[^12]: *Dodds et. al. Phys. Rev. A 100, 032320 (2019)

