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What this talk is about (+ collaborator acknowledgments)

Some background as well as some perspective on the theory

1. Background: quantum computing, and where quantum
annealing fits within it

2. Moving theory beyond a limit which is often impractically slow
for real devices (the adiabatic limit)
I Work with Adam Callison, Max Festenstein, Jie Chen,

Laurentiu Nita, and Viv Kendon

3. How does the encoding of optimisation problems affect
dynamics?
I Work with Jesse Berwald and Raouf Dridi



Quantum computing

Big idea: harness the fundamental physics of discrete systems (quan-
tum mechanics) to solve important problems

I We know it works in theory: quantum search of unstructured
database with N entries in a time proportional to

√
N

I This is not possible without using quantum mechanics (only
option without QM is random guess or exhaustive search)

...but how do we use real, imperfect, quantum machines to solve
problems people care about?



Applied Quantum computing
How do we use real, imperfect, quantum machines to solve

problems people care about?

1. Only use them for what they are good at do the rest
classically hybrid quantum/classical algorithms?, build theory
around what can be done physically, not the other way around
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2. Find the right problems → need to be the right shape and size
for near term the machines... and still be problems people
care about important! but not the topic of this talk

But first... some background on continuous time QC and quantum
annealing

?see: Callison and Chancellor Phys. Rev. A 106, 010101



Two different approaches to quantum computing

‘Gate’ based quantum computing

• Discrete quantum operations
on qubits

• Construct ‘circuits’ out of
these gates

• Detect and correct errors to
reduce effect of noise
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Continuous time

• Map problems directly to
physical system

• Allow quantum physics to
help search solution space

• Low temperature
environment could help
solve problems



Why continuous time?
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Classical bits: fundamentally discrete → 0 or 1, nothing in between

Lends itself to a discrete digital description: bit flips either happen
or they don’t

Quantum bits: continuous rotations are possible

Breaking operations up into discrete chunks is not natural → an
(exact) bit flip is just as hard as any other rotation

Bonus feature: applied gate based algorithms similar to continuous time
operations → cont. time algorithms have implications for gate based



Getting physics to solve hard problems → transverse field
Ising model

Physics Language, Hamiltonian:

H = −A(t)
n∑
i

Xi + B(t)

 n∑
i

hi Zi +
n∑
i ,j

Jij ZiZj


What this means in non-physics language:∑n

i Xi → Bit flips, hops state through n dimensional hypercube

∑n
i hi Zi +

∑n
i ,j Jij ZiZj → Ising spin glass, defines interesting prob-

lem to be solved (as bitstring energies) more on next slides



Example of Ising problem mapping ?

Have:
I Binary variables Zi ∈ {−1, 1}
I Minimisation over Hamiltonian made of single and pairwise

terms HIsing =
∑

i hiZi +
∑

j>i Ji ,jZiZj

Want:
I Maximum independent set: how many vertexes on a graph

can we colour so none touch? → NP hard

Method:

1. For an edge between vertex i and j add Zi + Zj + ZiZj →
penalizes colouring (Z = 1) adacent vertexes

2. Add −λZi to reward coloured vertexes (0 < λ < 1)
?Taken from the notes of a physics level 3 computing project I wrote, full

notes at: http://nicholas-chancellor.me/QOpt project final.pdf



Minor embedding

I Strong ‘ferromagnetic’ (−ZiZj ) coupling energetically
penalizes variables disagreeing

I If strong enough than entire ‘chain’ acts as a single variable

I Mathematically corresponds to mapping one graph to graph
minors of another

Can embed arbitrary graphs into quasi-planar hardware graph with
polynomial (n2 for fully connected) overhead → Ising model re-
stricted to hardware graph is also NP-hard

In practice this leads to a large overhead→ important consideration
for solving real problems



Actually solving problems
Quantum Hamiltonians generalize classical Monte Carlo algorithms
e.g. simulated annealing
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I Parameter sweeps (a.k.a. annealing) can be used to solve

problems

I Low temperature dissipation can help too

This algorithm is called quantum annealing



Adiabatic quantum computing (a theorist’s version of
quantum annealing)

Traditional picture:

I Map an NP-hard optimization problem to a Hamiltonian,
unknown ground state is solution

I Slowly change from a (driver) Hamiltonian with an easily
prepared ground state to problem Hamiltonian

I Adiabatic theorem of quantum mechanics → success
probability arbitrarily close to 100 % by running long enough
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Advantages and disadvantages of this picture

Theoretically satisfying

• Algorithm is effectively deterministic → “always” succeeds

• Intuitive picture involving only ground and first excited state

Let’s assume P6=NP ?

• Algorithm succeeds roughly 100% of the time

• Total runtime needs to be exponential in size of problem →
system needs to remain coherent for exponentially long time?

?For those unfamiliar with complexity theory, this is basically saying “let’s
assume that hard optimization problems exist”, most experts believe P6=NP

?For more sophisticated adiabatic theorem to faster quenches see: Crosson
and Lidar, Nature Reviews Physics volume 3, pages 466-489 (2021)



What can be done?
Restore coherence somehow

• Error correction, difficult to
do in continuous time, but
progress being made

• Low temperature dissipation
can restore coherence →
would have to be very low
temperature

• Have to mitigate enough
errors for a very long time

• Not the subject of this talk

image public domain from wikimedia commons

Succeed with low probability

• Total runtime is still
exponential in problem size

• Each run is short →
exponentially many needed
to hit right answer

• Exponentially low success
each run is conceptually
unsatisfying...

• ... but much less
demanding for coherence

Lottery



A simpler algorithm: continuous time quantum walk on
spin glass

I Start with an equal positive superposition of all solutions,
|ω〉 = 1√

N

∑
i |i〉

I Evolve with a fixed Hamiltonian Hwalk = γHhop + Hproblem

I Hhop = −∑
i Xi → superposition is ground state

I Hproblem =
∑

i ,j Ji ,jZiZj +
∑

i hiZi where hi and Ji ,j drawn
from the same Gaussian distribution

I Measure after random short period of time, repeat many times
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See Adam Callison et al 2019 New J. Phys. 21 123022 for details,
work with Adam Callison, Viv Kendon, and Florian Mintert



How is this a ‘walk’? How does it find solutions?
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I Hhop effectively forms a hypercube with a bitstring at each
vertex, probability amplitude ‘walks’ between different states

I Hproblem contributes phases which guide the walk

Energy is conserved 〈Hwalk〉t=0 = 〈Hwalk〉t>0 since the system starts
in the ground state of Hhop:
〈Hproblem〉t>0 − 〈Hproblem〉t=0 = 〈Hhop〉t=0 − 〈Hhop〉t>0 ≤ 0

Walk seeks out ‘good’ solutions!



Rapid quenches?
The energy conservation argument given previously can be extended
to any monotonic (closed system) quench

H(t) = A(t)Hdrive + B(t)Hproblem
A(t)

B(t)
≥ A(t + δt)

B(t + δt)
∀t

Sketch of proof:

1. Trotterize time evolution: A(t)→ A(t + δt) and
B(t)→ B(t + δt) and apply
|ψ(t + δt)〉 = exp(−iH(t)δt)|ψ(t)〉 in separate steps

2. Rescale time so that Hamiltonian always resembles quantum
walk Heff (Γ(t)) = Γ(t)Hdrive + Hproblem

3. In rescaled version Γ(t) ≥ Γ(t + δt) ∴
〈Heff (γ(t))〉ψ(t) − γ(t) n ≥ 〈Heff (Γ(t + δt))〉ψ(t) − Γ(t + δt) n

4. Because 〈Heff (Γ(t))〉ψ(t) ≥ −Γ(t) n ∀t , 〈Hproblem〉ψ(t) ≤ 0 ∀t

Details can be found in Callison et. al. PRX Quantum 2, 010338



A very general result!

What is needed for result to hold:

1. Monotonic Γ(t) ≥ Γ(t + δt) where Γ(t) = A(t)
B(t)

2. Start in ground state of Hdrive

3. Driver not gapless → not a concern for real problems

What is allowed:

1. No limit on how fast algorithm runs

2. Discontinuities in Γ(t) are ok

3. Hdrive does not need to be diagonal in an orthogonal basis to
Hproblem → starting state can be biased



Intuitive example: two stage quantum walk

Perform a quantum walk at γ1, and than use result as an input state
for a second walk at γ2 < γ1
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I Energy expectations: Green= γ1,2〈Hdrive〉; Blue= 〈Hproblem〉 ;
Gold= γ1,2〈Hd〉+ 〈Hproblem〉

I Total energy conserved except for at dashed line where γ
decreases

I Non-instantaneous quench effectively infinite stage quantum
walk



Why is the rapid quench result important?

General, but rather weak:
Any monotonic quench at least as good as measuring the initial
state

1. Design protocols to maximize dynamics → don’t need to
worry about dynamics being counter-productive not space to
discuss here, but this allows us to design better protocols

2. A biased search can already start from a very good guess next
slide

3. Mechanism to understand dynamics very far from adiabatic
limit



Hybrid protocols using this mechanism?
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Known techniques?:
Dissipative reverse annealing NC 2017 New J. Phys. 19 023024 as
implemented on D-Wave devices
Relies on dissipation, not suitable for coherent algorithms

Coherent reverse annealing Perdomo-Ortiz et. al. Quantum Inf
Process (2011) 10: 33. doi:10.1007/s11128-010-0168-z

Involves three separate Hamiltonians, not compatible with rapid
sweep proof in Callison et. al. PRX Quantum 2, 010338

Biased driver Hamiltonian Chinese Physics Letters, 30 1 010302
and Tobias Graß Phys. Rev. Lett. 123, 120501 (2019)

Compatible with proof in Callison et. al. PRX Quantum 2, 010338,
can apply the mechanisms discussed here

?for details of each, see Callison and Chancellor Phys. Rev. A 106, 010101



Effect of problem structure and encoding?

Consider higher-than-binary dis-
crete problems; appear often in real world optimisation, for example:

© A truck can go down any of three roads...

© A tasks can be scheduled at any of five times...

© A component can be placed any of seven places on a chip...

© Define two index objects:

xi ,α =

{
1 variable i takes value α

0 otherwise

© Discrete Quadratic models, (DQM), made from pairwise
interactions of x terms:

HDQM =
∑
i ,j

∑
α,β

D(i ,j ,α,β)xi ,αxj ,β

?Details in arχiv:2108.12004, accepted in Royal Society Philosophical
Transactions A



Discrete variables into binary, three ways
Variable size=m

performance metric binary one-hot domain wall?

# binary variables dlog2(m)e m m − 1

# couplers 0 if m = 2n n ∈ Z
m (m − 1) m − 2

for encoding complicated otherwise

intra-variable connectivity N/A or complicated complete linear

maximum order
2 dlog2(m)e 2 2

needed for two variable interactions

Binary= assign bitstrings to configurations
One hot= constrain variables so exactly one can be 1
Domain wall= new encoding w/ better performance: Chen
et. al. IEEE Transactions on Quantum Engineering 3102714 (2021)

encoded value qubit configuration

0 1111

1 -1111

2 -1-111

3 -1-1-11

4 -1-1-1-1

1 1 1 1

-1 1 1 1

-1 -1 1 1

-1 -1 -1 1

-1 -1 -1 -1
?Chancellor, Quantum Sci. Technol. 4 045004



Quadratic Assignment Problem (QAP)

Assign m facilities to m locations such that a single facility is only
assigned to one location and vice-versa

Bipartite
Matching

=

Complete 
Graph 

Coloring

© General (hard) version → pairs of assignments are weighted,
we use unweighted → not hard, but symmetry and large
degeneracy useful for analysis

© Can be thought of as a colouring problem on an m-node fully
connected graph

© m!-fold degenerate ground state



Experimental tests

Run on D-Wave Advantage annealer 10 embeddings at each size
with 10, 000 reads for total of 100, 000 reads at each size (default
settings otherwise)
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but domain-wall encoding performs much better.



Rate of feasible solutions

Stars represent fractions of returned solutions which are feasible
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One explanation: thermal excitations

Symmetry of problem means Metropolis algorithm converges
quickly, efficient thermal sampling
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Probability of feasible solution is better at higher temperature with
domain-wall encoding, makes sense one fewer qubit → smaller
solution space



Dynamic range squeezing

Minor embedding chains need to be stronger for larger problems →
less range left for problem, effectively higher temperature ?
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?we use default “uniform torque compensation” method



Thermal equilibrium model

Assuming an energy scale of ≈ 5 GHz at the freezing point we find
feasible probability for a purely thermal model
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© Shows same crossover as real data

© Not in the same location, but...

1. Estimate of energy scale is rough
2. Not all sizes will freeze at the same time each will have

different scales



Estimate energy scale
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1. Assume “frozen in” thermal distribution → Kibble-Zurek style
approximation

2. Known physical temperature and experimental success
probabilities

3. Back calculate energy scale (B) and therefore freeze point (s)

4. Verify that quantum fluctuations (A) can be safely ignored at
freeze point



Effective temperature and freeze point
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© Already taken into account embedding strength

© Domain-wall version effectively sampled at lower temperature
↔ later freezing

Encoding has a strong effect on the dynamics of how the
problem is solved



Why might this be true?

© One-hot value cannot be changed by flipping a single binary
variable

© Domain-wall can therefore easier for transverse field to update
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Need to consider underlying physics with encoding



Key points

The continuous-time setting (including quantum annealing) is a
promising setting for understanding how to solve problems

Important practical considerations exist for near-term quantum com-
puting

Most convenient theoretical setting often does not match what is
practical, we make steps toward advancing this kind of theory

We need a better understanding of the interface between problem
encoding and physical dynamics

Encoding can have a fundamental and dramatic effect on the physics



Supplemental slides



Comparing domain-wall and one-hot on hard colouring
problems?

For both k and three colouring problems the domain-wall encoding
performs better on both Advantage and 2000Q

three colouring (left), k-colouring (right)
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C=number of places same colour touches

Even looks like domain-wall on 2000Q out-performs one-hot on
Advantage!

Use hypothesis testing to verify that this is a statistically significant
result, test 100 instances on each and see how much each proces-
sor/encoding combination wins for all 6 combinations

?Chen et. al. IEEE Transactions on Quantum Engineering 3102714 (2021)



Hypothesis testing, three colour

Green=statistically significant result (95% confidence)
Adv. dw/oh 2000Q dw/oh dw Adv./2000Q oh Adv./2000Q (dw, Adv.)/(oh, 2000Q) (dw, 2000Q)/(oh, Adv.)

5 node (b,w) 0 0 0 0 0 0 0 0 0 0 0 0

5 node p

10 node (b,w) 42 0 37 0 2 0 19 21 39 0 40 0

10 node p 2.27× 10−13 7.28× 10−12 2.50× 10−1 6.82× 10−1 1.82× 10−12 9.09× 10−13

15 node (b,w) 85 2 95 3 32 34 70 22 94 1 91 2

15 node p 2.47× 10−23 4.95× 10−25 6.44× 10−1 2.67× 10−7 2.42× 10−27 4.41× 10−25

20 node (b,w) 99 0 100 0 43 41 94 3 100 0 93 2

20 node p 1.58× 10−30 7.89× 10−31 4.57× 10−1 9.60× 10−25 7.89× 10−31 1.15× 10−25

25 node (b,w) 100 0 FAIL 66 20 FAIL FAIL 98 2

25 node p 7.89× 10−31 3.33× 10−7 3.98× 10−27

30 node (b,w) 100 0 FAIL 72 20 FAIL FAIL 97 2

30 node p 7.89× 10−31 2.30× 10−8 7.81× 10−27

35 node (b,w) 100 0 FAIL FAIL FAIL FAIL FAIL FAIL

35 node p 7.89× 10−31

40 node(b,w) 100 0 FAIL FAIL FAIL FAIL FAIL FAIL

40 node p 7.89× 10−31

I Domain wall 2000Q beats one hot Advantage (in a
statistically significant way)

I Trend continue up to size where no longer possible to embed
in 2000Q (FAIL)

I Otherwise results are expected → 2000Q worse than
Advantage, one hot worse than domain wall



Hypothesis testing, k colour

Green/red=statistically significant result (95% confidence)
Adv. dw/oh 2000Q dw/oh dw Adv./2000Q oh Adv./2000Q (dw, Adv.)/(oh, 2000Q) (dw, 2000Q)/(oh, Adv.)

3 color (b,w) 0 0 0 0 0 0 0 0 0 0 0 0

3 color p

4 color (b,w) 34 1 37 2 11 3 26 16 44 1 33 7

4 color p 1.05× 10−9 1.42× 10−9 2.87× 10−2 8.21× 10−2 1.31× 10−12 2.11× 10−5

5 color (b,w) 91 1 78 1 34 18 23 59 88 1 91 1

5 color p 1.88× 10−26 1.32× 10−22 1.82× 10−2 ≈ 1 1.45× 10−25 1.88× 10−26

6 color(b,w) 99 0 FAIL 59 15 FAIL FAIL 99 0

6 color p 1.58× 10−30 1.28× 10−7 1.58× 10−30

7 color(b,w) 92 0 FAIL FAIL FAIL FAIL FAIL FAIL

7 color p 2.02× 10−28

I Domain wall 2000Q beats one hot Advantage (in a
statistically significant way)

I Trend continue up to size where no longer possible to embed
in 2000Q (FAIL)

I One case where 2000Q beats advantage for the same
decoding (one hot)?

?This goes away when the decoding strategy for broken chains is changed so
probably an artefact of majority vote decoding



Same pattern holds for probability to find optimal

three colouring (left), k-colouring (right)
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Note that each run was only performed with 100 reads, better results
could be attained with more reads

All QPU-encoding combinations found optimal solution at smallest
size → explains no “winners” in hypothesis testing


