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Problem Statement: Ising Spin Glass Hamiltonian
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Goal is to find ground/low energy states

I ’Universal’ in the sense that any classical Hamiltonian can be
mapped to it De las Cuevas, Cubitt Science 351 6278

I Thermal/quantum distributions also useful for inference and
machine learning tasks ex. Amin et. al. arXiv:1601.02036,
Chancellor et. al. Scientific Reports 6, 22318 ...



Simulated Annealing (classical)

Updates drive toward thermal distribution with temperature T if
they obey detailed balance

P(S(1)→ S(2)) = exp(
(E (1)− E (2))

T
)P(S(2)→ S(1))

Start at high T and lower over time



Quantum Annealing (QA)
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Add non-commuting transverse field terms

H(s) = −A(s)
∑

i

σx
i + B(s)HISG

start at A(s=0)
B(s=0) � 1, go to B(s=1)

A(s=1) � 1
Quantum fluctuations + low temperature bath cause tunneling
toward low energy states



Beyond Simulated Annealing (classical)

Parallel Tempering
I Multiple replicas at different temperatures

I Swap replicas by rules which obey detailed
balance

I Pswap(i , j) =

min
[
1, exp

((
1

T (i) −
1

T (j)

)
(Ei − Ej )

)]
Population Annealing

I Anneal multiple replicas

I Probabilistically remove poorly performing
replicas and copy those which perform well

I Rules preserve average population and obey
detailed balance

I N̄(E ) = 1
Q exp

((
1

Told
− 1

Tnew

)
E
)

Can hybrid strategies combine these with calls to an annealer?
Can these strategies be used directly by a quantum annealer?



Difficulties in building new annealer strategies
I No cloning theorem → cannot copy quantum states
I Measurements (ex. energy) disturb state of system and likely

experimentally difficult
I Usual QA is global search, no way of inserting information

Solution → use annealer subroutine which starts and ends at s = 1
(recall B(s=1)

A(s=1) � 1) with programmed initial state 1

1for an alternative closed system approach, see: A. Perdomo-Ortiz, et. al.
Quant. Inf. Proc.10(1):33–52, (2011). See also T. Graß and M. Lewenstein
Phys. Rev. A 95, 052309 (2017).



Doing this experimentally

I Only based on altering the classical control protocol of
devices, does not require changes to the qubits themselves

I This feature will be included in quantum annealing devices
manufactured by D-Wave Systems Inc. 2

2Reverse annealing logo created by D-Wave Systems Inc. used with
permission.



Hybrid computing using local search of solution space

Potential Strategies

1. Quantum and classical algorithms used together
I Classical input and output means that annealer can be used

alongside any classical algorithm

2. Multiple local quantum searches controlled by classical
algorithm

I Analogues to parallel tempering and population annealing
which use annealer only

I Will return to this later



Cartoon example: energy landscape with rough and
smooth features

X

a)

b)

c)

a) QA gets stuck in broad local minima and cannot tunnel to
correct minima

b) Classical algorithms can easily explore the broad features, while
the annealer can explore the rough ones

c) Even random initialization can improve solution probabilities,
may hit rough region by chance



Numerical proof-of-principle
I We can construct a 16 qubit Hamiltonian with energy

landscapes like the one shown on the previous slide
I Start from a random state as depicted in (c)
I Reverse anneal to different s ′ values

I A(s′)
B(s′) ≈ 0 the dynamics are effectively frozen

I moderate A(s′)
B(s′) , search locally → improve solution

I large A(s′)
B(s′) get trapped in a false minima → performs poorly



One slide aside: robustness against Problem
mis-specification

I Error in each energy proportional to
√
Nqubit

I Only energy differences within search matter

I Energy difference proportional to square root of Hamming
distance

I ∴ relevant error proportional to square root of search range
not

√
Nqubit

3

3Up to details about shape of the explored subspace, see NJP 19, 2, 023024
(2017)



Including uncertainty by annealing qubits differently
What if we are more sure about some parts of our guess then
others? → anneal different qubits back to different points
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s’(Pi)

s’(Pj)

An extreme version of this, which excluded qubits where a value
was expected with high certainty has already been done H. Karimi
and G. Rosenberg Quantum Inf. Proc. 16(7):166 (2017) and H.
Karimi and G. Rosenberg Phys. Rev. E, 96:043312



Representing this graphically: Inference Primitive
Formalism

I Represent quantum annealing call as an inference primitive Φ,
takes state guess S ∈ {−1, 1} and uncertianty values
P ∈ [0, 0.5], outputs list of states G and energies E

I Processing function F represents classical processing → takes
any number (including zero) of annealer outputs (found states
G and energies E ) and finds new guess S and uncertainty
values P

I Easily generalized to multi-body drivers representing
uncertainty on clusters of qubits

F

Φ

a)

b)

c)



Basic Examples: traditional QA, and repeated local search
in this formalism

I Traditional QA (left) represented by initialization processing
function which takes no inputs and gives complete uncertainty
(Pi = 0.5∀i) on all qubits, followed by post processing
function

I Repeated local search (right) from running annealer many
times and using the output as an input to the next processing
function



More advanced algorithms: Parallel tempering and
Population annealing analogues

I Processing function F returns lowest energy state as guess
and gives all qubits the same uncertainty Pi = p∀i

I Assign effective temperature T to each p value and either:

1. exchange using Parallel tempering rules (left)

Pswap(i , j) = min
[
1, exp

((
1

T (i) −
1

T (j)

)
(Ei − Ej )

)]
2. kill or replicate states using population annealing rules (right)

N̄(E ) = 1
Q exp

((
1

Told
− 1

Tnew

)
E
)



Even more advanced algorithms: Genetic algorithms
I A processing function which takes more than one input is a

‘breeding’ step of a genetic algorithm
I For instance could be thermally reweighted sum4 ( u indicates

sum over unique states found)

Si = sgn(
∑Nu

j=1 G
(u)
j exp(−E

(u)
j

Teff
)),

Pi = 1
Z (
∑Nu

j=1 δG
(u)
j ,−Si

exp(−E
(u)
j

Teff
))

I Could be used to add crossbreeding to Population annealing
analogue, as shown below

4see: arχiv:1609.05875 for details



Conclusions

I Classical controls can be used to make quantum annealers
perform subroutines in hybrid quantum/classical algorithms

I D-Wave Systems Inc. are already implementing these controls
on their devices

I Annealer call can be represented in the inference primitive
formalism

I Many algorithmic possibilities, including genetic algorithms,
this work has barely scratched the surface
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