
A domain-wall encoding of discrete variables?

HPC 2021

Nicholas Chancellor

July 29, 2021

?Based on results from arχiv:2102.12224 (with co-authors Jie Chen and
Tobias Stollenwerk, accepted in IEEE Transactions on Quantum Engineering
DOI: 10.1109/TQE.2021.3094280) and background from other sources

Aside: UK activities which may be relevant to this audience

QEVEC

I Test early applications for quantum in exascale computing

I Very recently funded (UKRI)

I Focused on using quantum within HPC for real applications
(including material science for example)

I Contact Viv Kendon for more info: viv.kendon@durham.ac.uk

CCP-QC

I Collaborative computational project on quantum computing

I Network focused on early academic research applications

I webpage ccp-qc.ac.uk

One-hot constraints
I Common constraints found in optimisation problems
I Enforce that exactly one mutually exclusive option is taken
I Examples: a vehicle can only take one route to get to a

destination, a piece of equipment can only be doing one thing
at a time, etc...

Easy to enforce using quadratic interactions, term proportional to
(
∑

i xi − 1)2 equal to zero if exactly one variable is 1 and all others
are 0, higher otherwise
...but requires interaction between all variables

A slightly different perspective: discrete variables

I Rather than thinking of individual binary variables under a
constraint, treat like a single m value variable

I A mostly philosophical distinction, but crucial for
understanding other encodings

I Define two index objects:

xi ,α =

{
1 variable di takes value α

0 otherwise

I Discrete Quadratic models, (DQM), made from pairwise
interactions of x terms:

HDQM =
∑
i ,j

∑
α,β

D(i ,j ,α,β)xi ,αxj ,β

one-hot and binary encoding as a DQM

Hone hot =HDQM + λ
∑
i

(
m−1∑
α=0

xi ,α − 1

)2

I Each xi ,α is an individual binary variable, add one-hot
constraints to force them to be single valued

I Easy to forget distinction in this case, but in general xi ,α does
not need to map to a single binary variable

I Binary encoding, each binary variable b ∈ {0, 1} is a digit in a
binary number xi ,α is a string of log2(m) b and 1− b terms

Is there another way?
YES!

1. Constrain Ising si ,α ∈ {−1,+1} variables with strong
ferromagnetic coupling

Hchain = −κ

(
m−2∑
α=−1

si ,αsi ,α+1

)

2. Constrain si ,−1 = −1 and si ,m−1 = 1 so that the chain
consisting of variables 1...m − 2 is frustrated and contains at
least one domain wall

3. Define DQM terms

xi ,α =
1

2
(si ,α − si ,α−1)

Discrete variables into binary, three ways?

Variable size=m
performance metric binary one-hot domain wall

binary variables dlog2(m)e m m − 1

couplers 0 if m = 2n n ∈ Z
m (m − 1) m − 2

for encoding complicated otherwise

intra-variable connectivity N/A or complicated complete linear

maximum order
2 dlog2(m)e 2 2

needed for two variable interactions

Binary= assign bitstrings to configurations
One hot= constrain variables so exactly one can be 1
Domain wall= new method we discuss here

encoded value qubit configuration

0 1111

1 -1111

2 -1-111

3 -1-1-11

4 -1-1-1-1

1 1 1 1

-1 1 1 1

-1 -1 1 1

-1 -1 -1 1

-1 -1 -1 -1

?For details see: Chancellor, Quantum Sci. Technol. 4 045004

Binary encoding

I A variable of size m can be encoded in dlog2(m)e qubits

I Arbitrary interactions require high order terms in Hamiltonian

I Only quadratic interactions → gadgets → auxilliary variables

I Fair counting needs to include auxilliary variables as well

2 4 6 8 10 12
m

0

20

40

60

80

100
bi

na
ry

 v
ar

ia
bl

es
 re

qu
ire

d auxilliaries per interaction (binary lower bound)
excess qubits per variable (one-hot)
 excess qubits per variable (domain-wall)

2 3 4 5
0
1
2
3
4
5

This is a losing proposition for general interactions?

?Extensive discussion of this point recently added to arχiv:2102.12224;
binary may still be best for interactions with special structure, example,
variable multiplication: Joseph et. al. Phys. Rev. A 103, 032433

How does this domain-wall encoding stack up against
one-hot?

I One fewer qubit per DQM variable than one-hot

I xi ,α is linear in s terms, therefore xi ,αxj ,β is quadratic, maps
to Ising model with only second order interactions

I Simple degree of freedom counting arguments → domain-wall
encoding uses the smallest possible number of variables for all
xi ,αxj ,β terms to be quadratic

I Less connectivity within variables, linear versus all-to-all

Test this on an example: colouring problems?

Simple test problem with structure: penalty between nodes if and
only if they are the same colour
Use natural structure of problem to ‘spread out’ embedding

Four colouring example, ‘layered’ structure in Domain wall (right),
no structure in one hot, (left)

three-colouring → randomly generated edges with 50% probability
k-colouring → twice as many nodes as colours, random edges with
75% probability

?Example taken from Chancellor, Quantum Sci. Technol. 4 045004

Test this numerically with minor-miner?
0 10 20

0

10

20

em
be

dd
in

g
ra

tio

a)
0 10 20

0

20

3 45678910
1112

3 4
5

6
7

8
9b)

0 10 20
embedding ratio

0

10

20

5
10

15
20

5
10

15
c)

0 10
0

20
d)

Embedding ratio= number of qubits per logical variable
(Y-axis=one-hot, X-axis=domain-wall)
chimera in red, Pegasus in blue

(a) Max-three-colouring problems (domain-wall slightly worse)

(b) Max-k-colouring problems (domain-wall much better)

(c) Artificial scheduling problem (domain-wall much better)
?Example taken from Chancellor, Quantum Sci. Technol. 4 045004

Bigger problems can be embedded on the same size device?

10 20 30

5
10
15

Ch
im

er
a

L a)
5.0 7.5

10

20
b)

10 20 30
size of graph

2

4

6
Pe

ga
su

s L c)

5 10
number of colours

5
10
15d)

Size of device required to embed problems of different sizes
right column= three colouring, left= k-colouring

I Can embed larger problems for both graphs and problem types

I Fewer binary variables makes up for slightly worse embedding
ratio in three-colouring case

?Example taken from Chancellor, Quantum Sci. Technol. 4 045004

What about dynamics?

I Makes embedding more efficient...

I But does it translate to performance gains on actual
annealers? how does the encoding affect the dynamics?

Not easy to answer a priori, on one hand

I Changing the values of domain-wall variables is
non-perturbative?

I This isn’t true for one-hot

On the other hand
I Configurations now have a defined order and are traversed in

a linear way, rather than one-hot where there is no “order”

I Not clear if this will be helpful or harmful

Need to test experimentally, our recent paper arχiv:2102.12224
does this

?all valid configurations can be reached without having to pass through
invalid configurations

The results?

For both k and three colouring problems the domain-wall encoding
performs better on both Advantage and 2000Q

three colouring (left), k-colouring (right)

5 10 15 20 25 30 35 40
graph size

0.00

0.05

0.10

0.15

0.20

0.25

C/
ed

ge
 n

um
be

r

one hot 2000Q
one hot Advantage
domain wall 2000Q
domain wall Advantage

3.0 3.5 4.0 4.5 5.0 5.5 6.0
color number

0.02

0.04

0.06

0.08

0.10

0.12

C/
ed

ge
 n

um
be

r

one hot 2000Q
one hot Advantage
domain wall 2000Q
domain wall Advantage

C=number of places same colour touches

Even looks like domain-wall on 2000Q out-performs one-hot on
Advantage!

Use hypothesis testing to verify that this is a statistically significant
result, test 100 instances on each and see how much each proces-
sor/encoding combination wins for all 6 combinations

?arχiv:2102.12224

Hypothesis testing, three colour?

Green=statistically significant result (95% confidence)
Adv. dw/oh 2000Q dw/oh dw Adv./2000Q oh Adv./2000Q (dw, Adv.)/(oh, 2000Q) (dw, 2000Q)/(oh, Adv.)

5 node (b,w) 0 0 0 0 0 0 0 0 0 0 0 0

5 node p

10 node (b,w) 42 0 37 0 2 0 19 21 39 0 40 0

10 node p 2.27× 10−13 7.28× 10−12 2.50× 10−1 6.82× 10−1 1.82× 10−12 9.09× 10−13

15 node (b,w) 85 2 95 3 32 34 70 22 94 1 91 2

15 node p 2.47× 10−23 4.95× 10−25 6.44× 10−1 2.67× 10−7 2.42× 10−27 4.41× 10−25

20 node (b,w) 99 0 100 0 43 41 94 3 100 0 93 2

20 node p 1.58× 10−30 7.89× 10−31 4.57× 10−1 9.60× 10−25 7.89× 10−31 1.15× 10−25

25 node (b,w) 100 0 FAIL 66 20 FAIL FAIL 98 2

25 node p 7.89× 10−31 3.33× 10−7 3.98× 10−27

30 node (b,w) 100 0 FAIL 72 20 FAIL FAIL 97 2

30 node p 7.89× 10−31 2.30× 10−8 7.81× 10−27

35 node (b,w) 100 0 FAIL FAIL FAIL FAIL FAIL FAIL

35 node p 7.89× 10−31

40 node(b,w) 100 0 FAIL FAIL FAIL FAIL FAIL FAIL

40 node p 7.89× 10−31

I Domain wall 2000Q beats one hot Advantage (in a
statistically significant way)

I Trend continue up to size where no longer possible to embed
in 2000Q (FAIL)

I Otherwise results are expected → 2000Q worse than
Advantage, one hot worse than domain wall

?arχiv:2102.12224

Hypothesis testing, k colour?

Green/red=statistically significant result (95% confidence)
Adv. dw/oh 2000Q dw/oh dw Adv./2000Q oh Adv./2000Q (dw, Adv.)/(oh, 2000Q) (dw, 2000Q)/(oh, Adv.)

3 color (b,w) 0 0 0 0 0 0 0 0 0 0 0 0

3 color p

4 color (b,w) 34 1 37 2 11 3 26 16 44 1 33 7

4 color p 1.05× 10−9 1.42× 10−9 2.87× 10−2 8.21× 10−2 1.31× 10−12 2.11× 10−5

5 color (b,w) 91 1 78 1 34 18 23 59 88 1 91 1

5 color p 1.88× 10−26 1.32× 10−22 1.82× 10−2 ≈ 1 1.45× 10−25 1.88× 10−26

6 color(b,w) 99 0 FAIL 59 15 FAIL FAIL 99 0

6 color p 1.58× 10−30 1.28× 10−7 1.58× 10−30

7 color(b,w) 92 0 FAIL FAIL FAIL FAIL FAIL FAIL

7 color p 2.02× 10−28

I Domain wall 2000Q beats one hot Advantage (in a
statistically significant way)

I Trend continue up to size where no longer possible to embed
in 2000Q (FAIL)

I One case where 2000Q beats advantage for the same
decoding (one hot)?

?This goes away when the decoding strategy for broken chains is changed so
probably an artefact of majority vote decoding

?arχiv:2102.12224

Experimental results summary?

I Encoding makes a bigger difference to solution optimality
even than choosing a more advanced processor

I Domain wall constraints seem much less “fragile”

I Encoding still helps with chain breaks, but advantage is
smaller → QPU structure makes a bigger difference

Experiments didn’t find any metrics where one-hot does better

No observed downside to using domain-wall encoding, but some
major advantages

?Additional results on supplemental slides if people are interested, can also
be found in arχiv:2102.12224

Want to try it yourself?

Python code to create domain wall encodings available at
https://collections.durham.ac.uk/: “Domain wall encoding of in-
teger variables for quantum annealing and QAOA [dataset]”?

?https://doi.org/10.15128/r27d278t029

How to use the repository code

I Load the ez domain wall module

I The function make domain wall encoding creates a domain
wall encoding of a discrete problem

I ez dw examples jupyter notebook with some examples of how
to use the code

Inputs to make domain wall encoding

1. Variable sizes: a list of the sizes of all variables, → call the
sum of these sizes R

2. Penalties: single body terms which penalize different values of
individual variables, 1-D array (or list) of length R

3. Interactions: interactions between variables upper triangular R
by R array

Outputs: J core, h core terms for enforcing domain wall constraints,
J prob, h prob rest of Hamiltonian

A simple example: three colouring a line of three nodes

1. Three variables with three possible colours, therefore variable
sizes → [3, 3, 3] (R = 3× 3 = 9)

2. No single term penalties, therefore penalties term is all zeros
(length 9)

3. Interaction terms: 9× 9 array of zeros with 6 terms which
take value 1 (using Python style zero indexing)
(0, 3), (1, 4), (2, 5) → prevent the first and second node from
being the same colour
(3, 6), (4, 7), (5, 8) → prevent the second and third node from
being the same colour

The outputs for our simple example

h core:
[

1 −1 1 −1 1 −1
]

J core:



0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0


h prob:

[
0.25 −0.25 0.5 −0.5 0.25 −0.25

]

J prob:



0.0 0.0 0.5 −0.25 0.0 0.0
0.0 0.0 −0.25 0.5 0.0 0.0
0.0 0.0 0.0 0.0 0.5 −0.25
0.0 0.0 0.0 0.0 −0.25 0.5
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0


H =

∑
i<j J probij si sj +

∑
i h probi si +

κ
(∑

i<j J core ij si sj +
∑

i h core i si

)
s ∈ {−1, 1}

Possible application: quantum simulation

I Treat each variable in the DQM as a point in space

I Quadratic coupling can emulate many differential equation
terms (may also be useful in solving other diff. eqs)

I Transverse fields can emulate local quantum fluctuations in
quantum field theories (field fluctuates to nearby values)

Under development with Steven Abel and Michael Spannowsky in
Durham IPPP?

Not the main focus of the talk, but worth highlighting

?see: S. Abel, N. Chancellor, M. Spannowsky Phys. Rev. D 103, 016008
(2021) and S. Abel, M. Spannowsky arχiv:2006.06003

Further outlook (Chancellor, QST. 4 045004)

Drivers which preserve valid subspace out of two body terms?

I Constructed by combining Zi−1Xi and −XiZi+1 terms →
rotations only happen if domain wall is present

I May be useful in QAOA or other gate model algorithm
(maybe even just with transverse field drivers)

I Annealers with muti-body drivers (longer term)

Layered structure for important problem types such as colouring
and scheduling

I Suggests application specific (ASIC if superconducting)
designs for future annealers

?analogous to what was done in Hadfield et. al. Algorithms 12.2 (2019): 34

Summary

Domain-wall encoding can lead to superior performance over
one-hot for quantum annealing

I No downside seen yet

I Can get substantial gains, more than new hardware in the
cases we tested

Should try it if you are using discrete variables

I Python code available; don’t have to code “from scratch”

I dw encoding to be included in DLR (German aerospace
organization) software package when released

I QAOA has not been tested, not clear how it would perform

Potential for using annealers as simulators

I Early results, still being explored (ongoing work with
Quantum Computing Inc. to do this, watch this space!)

I More rigorous understanding may be helpful

Supplemental slides: More details on domain-wall
performance

Summary of more results from arχiv:2102.12224

Same pattern holds for probability to find optimal?

three colouring (left), k-colouring (right)

6 8 10 12 14
graph size

0.0

0.2

0.4

0.6

0.8

1.0

P

one hot 2000Q
one hot Advantage
domain wall 2000Q
domain wall Advantage

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00
color number

0.0

0.2

0.4

0.6

0.8

1.0

P

one hot 2000Q
one hot Advantage
domain wall 2000Q
domain wall Advantage

Note that each run was only performed with 100 reads, better results
could be attained with more reads

All QPU-encoding combinations found optimal solution at smallest
size → explains no “winners” in hypothesis testing

?arχiv:2102.12224

Digging deeper into performance: encoding failures?

What fraction of solutions have all one-hot/domain-wall constraints
satisfied

three colouring (left), k-colouring (right)

5 10 15 20 25 30 35 40
graph size

0.0

0.2

0.4

0.6

0.8

1.0

R e
nc

one hot 2000Q
one hot Advantage
domain wall 2000Q
domain wall Advantage

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
color number

0.0

0.2

0.4

0.6

0.8

1.0

R e
nc

one hot 2000Q
one hot Advantage
domain wall 2000Q
domain wall Advantage

Domain-wall constraints are much less “fragile” especially with only
three colours, makes a much bigger difference than processor struc-
ture

?arχiv:2102.12224

Digging deeper into performance: chain breaks?

What fraction of solutions have no unbroken minor embedding
chains

three colouring (left), k-colouring (right)

5 10 15 20 25 30 35 40
graph size

0.0

0.2

0.4

0.6

0.8

1.0

R c
ha

in

one hot 2000Q
one hot Advantage
domain wall 2000Q
domain wall Advantage

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
color number

0.0

0.2

0.4

0.6

0.8

1.0

R c
ha

in

one hot 2000Q
one hot Advantage
domain wall 2000Q
domain wall Advantage

Note: bars are standard deviation, standard error is 10x smaller

QPU structure seems to make a bigger difference here, but domain-
wall encoding still leads to an improvement

?arχiv:2102.12224

