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A brief note about terminology

For the purposes of this talk:

I Adiabatic quantum computation (AQC) → closed system
protocols where an eigenstate is maintained via the adiabatic
theorem of quantum mechanics

I Quantum Annealing (QA) → dissipation from open system
effects is the dominant mechanism

The terminology is not standardized and different groups may use
these terms differently



Adiabatic quantum computing

Traditional picture:

I Map an NP-hard optimization problem to a Hamiltonian,
unknown ground state is solution

I Slowly change from a (driver) Hamiltonian with an easily
prepared ground state to problem Hamiltonian

I Adiabatic theorem of quantum mechanics → success
probability arbitrarily close to 100 % by running long enough
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Advantages and disadvantages of this picture

Theoretically satisfying

• Algorithm is effectively deterministic → “always” succeeds

• Intuitive picture involving only ground and first excited state

Let’s assume P6=NP ?

• Algorithm succeeds roughly 100% of the time

• Total runtime needs to be exponential in size of problem →
system needs to remain coherent for exponentially long time

?For those unfamiliar with complexity theory, this is basically saying “let’s
assume that hard optimization problems exist”, most experts believe P6=NP



What can be done?
Restore coherence somehow

• Error correction, difficult to
do in continuous time, but
progress being made

• Low temperature dissipation
can restore coherence →
would have to be very low
temperature

• Have to mitigate all errors
for a very long time

• Not the subject of this talk

image public domain from wikimedia commons

Succeed with low probability

• Total runtime is still
exponential in problem size

• Each run is short →
exponentially many needed
to hit right answer

• Exponentially low success
each run is conceptually
unsatisfying...

• ... but much less
demanding for coherence

Lottery



Example: continuous time quantum walk on spin glass

I Start with an equal positive superposition of all solutions,
|ω〉 = 1√

N

∑
i |i〉

I Evolve with a fixed Hamiltonian Hwalk = γHhop + Hproblem

I Hhop = −
∑

i σ
z
i → superposition is ground state

I Hproblem =
∑

i ,j Ji ,jσ
z
i σ

z
j +

∑
i hiσ

z
i where hi and Ji ,j drawn

from the same Gaussian distribution

I Measure after random short period of time, repeat many times
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See arχiv:1903.05003 for details, work with Adam Callison, Viv
Kendon, and Florian Mintert



How is this a ‘walk’? How does it find solutions?
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ĤP

〉
ψ(t)

〈
ĤP
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I Hhop effectively forms a hypercube with a bitstring at each
vertex, probability amplitude ‘walks’ between different states

I Hproblem contributes phases which guide the walk

Energy is conserved 〈Hwalk〉t=0 = 〈Hwalk〉t>0 since the system starts
in the ground state of Hhop:
〈Hproblem〉t>0 − 〈Hproblem〉t=0 = 〈Hhop〉t=0 − 〈Hhop〉t>0 ≤ 0

Walk seeks out ‘good’ solutions!



How much to walk? Choosing the γ parameter

Hwalk = γHhop + Hproblem

Still have one undefined parameter, γ, how do we set it? does it need
to be set precisely? How do we make sure we are not ‘cheating’?

P∞ is the long time average success probability

Short answer: yes, γ does not have to be precisely set to find solu-
tions effectively, and we can find a heuristic to choose it (without
cheating) More on the precision later, for details about the heuristic
see arχiv:1903.05003



How well this works, numerically extracting scaling
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I N = 2n possible bitstrings, one correct solution, runtime
scales as inverse probability

I Scaling of 1
N0.417 better than both classical guessing ( 1

N ) and
1√
N

unstructured (Grover like) quantum search

The structure of the problem (correlations in bitstring energies) is
playing a role in the computational mechanism, otherwise could not
beat 1√

N
scaling



Compare to problems without correlations
Random Energy Model (REM): each bitstring is assigned a random
independent energy

I Dynamics become dominated by a single close avoided
crossing, require fine tuned γ, technically difficult, may not be
possible to find correct value

I Requires single long run for high success probability → need
long coherence time
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Compare to unstructured search

I Continuous time analog to Grover search

I Problem Hamiltonian is a single marked bitstring |m〉〈m|:

H(s) = −(1− s)
∑

i σ
x
i + s(1− |m〉〈m|)
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I Same optimal speedup as gate model finds solution in time√
N rather than N from classical guessing/exhaustive search

I Exponentially sensitive to parameter setting (values of s)

I Succeeds with O(1) probability after
√
N runtime

For a detailed study of AQC and QW, see Morley et. al. Phys. Rev.
A 99, 022339 (2019), for practical implementation, see Dodds et.
al. Phys. Rev. A 100, 032320 (2019)



(Why) is the effect of correlations interesting?

If the bitstring energies are uncorrelated no classical algorithm could
do better than random guessing, why?

Energy of one bitstring tells nothing about energy of neighbours

Complementary to the search-like mechanism usually attributed to
quantum algorithms
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Not just a ‘one off’ difference between spin glasses and REM, but
more general between correlated and uncorrelated energies



Beyond simple quantum walks

Study of quantum walks on spin glasses fruitful for understanding
computational mechanisms, but scaling is not cutting edge

How do we build better algorithms on top of this result?

1. Add a (rapid) quench to dissipate some energy
I Need theory which goes beyond adiabatic and works for rapid

quenches

2. Use as a hybrid subroutine along with classical computation
I Needs to be coherent and ideally compatible with the theory

from point 1



Rapid quenches?
The energy conservation argument given previously can be extended
to any monotonic (closed system) quench

H(t) = A(t)Hd + B(t)Hproblem
A(t)

B(t)
≥ A(t + δt)

B(t + δt)
∀t

Sketch of proof:

1. Trotterize time evolution: A(t)→ A(t + δt) and
B(t)→ B(t + δt) and apply
|ψ(t + δt)〉 = exp(−iH(t)δt)|ψ(t)〉 in separate steps

2. Rescale time so that Hamiltonian always resembles quantum
walk Heff (γ(t)) = γ(t)Hd + Hproblem

3. In rescaled version γ(t) ≥ γ(t + δt) ∴
〈Heff (γ(t))〉ψ(t) − γ(t) n ≥ 〈Heff (γ(t + δt))〉ψ(t) − γ(t + δt) n

4. Because 〈Heff (γ(t))〉ψ(t) ≥ −γ(t) n ∀t , 〈Hproblem〉ψ(t) ≤ 0 ∀t

Unpublished work with Adam Callison and Viv Kendon



Intuitive example: two stage quantum walk

Perform a quantum walk at γ1, and than use result as an input state
for a second walk at γ2 < γ1
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I Energy expectations: Green= γ1,2〈Hd〉; Blue= 〈Hproblem〉 ;
Gold= γ1,2〈Hd〉+ 〈Hproblem〉

I Total energy conserved except for at dashed line where γ
decreases

I Non-instantaneous quench effectively infinite stage quantum
walk



Pre-annealed quantum walk, single spin glass example

Perform an anneal before the walk to dissipate energy
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I Vertical dashed line is end of pre-anneal

I Longer pre-anneal lowers 〈Hproblem〉 (solid lines top plot) and
raises success probability

I How does this affect scaling?

I Stop in paramagnetic regime and avoid exponentially small
gaps in spin glass



Scaling boost from pre-annealing

I Blue and Magenta quantum walk (two different ways of
choosing γ)

I Red and Gold Pre-annealed walks with γ values from regular
QW

I Black and Gray Pre-annealed quantum walk with more
optimal γ

I Green Effective scaling for classical branch-and-bound (for
comparison)



Pre-annealed quantum walk beats classical state of the art

I Thanks to Zoe Burtrand (summer project student at Durham)
for optimal branch-and-bound (BnB) implementation

I Scaling exponent less than half of state-of-the-art classical

I Comparable to quantum branch-and-bound scaling exponent
found in arX iv:1906.10375 ours: 0.145, theirs 0.186

However...

I Our techniques are not hybrid like the quantum BnB (i.e. do
not use classical tricks on top of quantum)

I Room for improvement as a subroutine in hybrid quantum
classical? (maybe even combining with quantum BnB)



Hybrid subroutines in Continuous time: a review
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Known techniques:
Reverse annealing NC 2017 New J. Phys. 19 023024 as
implemented on D-Wave devices
Relies on dissipation, not suitable for coherent algorithms

‘Mexican hat’ schedule Perdomo-Ortiz et. al. Quantum Inf
Process (2011) 10: 33. doi:10.1007/s11128-010-0168-z?

Involves three separate Hamiltonians, not compatible with rapid
sweep proof

Biased driver Hamiltonian arχiv:1906.02289 and Chinese Physics
Letters, 30 1 010302
Compatible with proof, and can be used with quantum walk: this is
the technique we want to focus on

?sometimes also called reverse annealing



Experimental results with dissipative reverse annealing

1. Start from one ground state to find other ground states
(D-Wave whitpaper 14-1018A-A)
I Finding other GS 150x more likely then forward

2. Search locally around classical solution (arχiv:1810.08584)
I Start from greedy search solution
I Speedup of 100x over forward annealing

3. Iterative search (arχiv:1808.08721)
I Iteratively increase search range until new solution found
I Forward annealing could not solve any, reverse solved most

4. Quantum simulation(Nature 560 456–460 (2018))
I Seed next call with result from previous
I Seeding with previous state makes simulation possible

5. Monte Carlo and Genetic like algorithms
I Quantum assisted genetic algorithm QAGA (arχiv:1907.00707)
I Finds global optima quickly where traditional QA struggles
I Theoretical discussion (NJP 19, 2, 023024 (2017) and

arχiv:1609.05875)



Biased driver Hamiltonian?

Define driver Hamiltonian using fields which are not (completely)
transverse Hd =

∑n
i=1− cos(θ)σx

i − gi sin(θ)σz
i

I Start in ground state of Hd :
|ψ(t = 0)〉 =

⊗n
i=1

1√
2+2 gi cos(θ)

[(1 + gi cos(θ))|0〉+ sin(θ)|1〉]
I Starting state biased toward classical bitstring g , gi ∈ {−1, 1}
I Closed system with monotonic sweep (including QW), time

evolution improves the guess (on average):

〈Hproblem〉ψ(t) ≤ 〈Hproblem〉ψ(0)
I Ground state is optimal solution so adiabatic theorem holds

and dissipation can assist as well
Can use AQC, QW and QA mechanisms simultaneously
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z

?with Laur Nita, Jie Chen, Adam Callison, Viv Kendon and Matthew Walsh.
Note related work: arχiv:1906.02289 and Chinese Physics Letters, 30 1 010302



Quantum walk with biased driver: proof-of-concept

I Consider a guess where each bit has an independent
probability P of being wrong

I How good does the guess need to be before biasing
(parametrized by θ, θ = 0, no bias) improves the solution?

I Colour axis is success probability, line is optimal, result for
eight qubit max-2-sat,

I hybrid techniques become useful right around 50% success
probability, becomes significant around 45%

I Preliminary work by Laur Nita (PhD student)



Take home messages
Algorithms with exponentially low success probability in a single run

I Unless P = NP all algorithms will have exponentially low
success, exponential single run time, or both

I Only need to be coherent for single run → much less
demanding for hardware (lower precision needed as well)

I Less psychologically satisfying, but no other real drawback

Quantum walks on spin glasses

I Correlations in energy landscape play a role, allow better than√
N runtime

I Behaves differently from simple search, less demanding for
control precision (SS not good model for all computation!)

I Pre-annealing → performance competitive with state of art

I Working on hybrid subroutines


