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Quantum annealing, the big picture

I Build a physical system where degrees of freedom correspond
to binary variables (qubits)

I Map optimization/ machine learning problems such that lower
energy → more optimal

I Use natural quantum dynamics to find highly optimal states.
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Problem Statement: Ising Spin Glass Hamiltonian
System is described by a diagonal Hamiltonian matrix:

HISG =
∑
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z
i +
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i σ
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j

σz
i ≡ (

⊗i−1
1 I2)⊗
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1 0
0 −1

)
⊗ (
⊗n

i+1 I2))

I ’Universal’ in the sense that any classical Hamiltonian can be
mapped to it De las Cuevas, Cubitt Science 351 6278

I Thermal/quantum distributions also useful for inference and
machine learning tasks ex. Amin et. al. arXiv:1601.02036,
Chancellor et. al. Scientific Reports 6, 22318 ...



Simple example

Problem: find the maximal independent set of variables with
interactions defined by a graph G
Mapping: For every edge in G set Jij = 1, otherwise Jij = 0, set all
hi = −0.1
smallest diagonal element of HISG (lowest energy state) will
correspond to maximal independent set
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Making this quantum: adding (qu)bit flipping terms
(known as transverse fields in the literature)

H = −A
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[σz
i , σ

x
i ] 6= 0 ∴

A� B → non-interacting qubits classical for technical reasons

A� B →classical Ising spin glass, low energy states are good
solutions to problem

A ≈ B →complicated quantum spin glass, quantum tunneling and
thermal dissipation can team up to solve the problem



Quantum annealing (traditional)
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I A ≈ B →complicated quantum spin glass, quantum tunneling
and thermal dissipation can team up to solve the problem

I Slowly change Hamiltonian → nature solves problem for you



Is this just a nice idea, can you build one?

I Superconducting circuit quantum annealers commercially
available from D-Wave systems Inc.

I Devices have over 2, 000 qubits

I You can own one for ≈£10M (some have been sold)

I Interest from big names like Google, Lockheed Martin, and
NASA

I No conclusive ‘killer app’ yet, but people are working on this

(image courtesy of D-Wave systems Inc.)



Thermal sampling
I Because of the role thermal fluctuations play in these devices,

they not only act as optimizers, but also thermal samplers
I Can actually be used for a maximum entropy decoder → can

do better than maximum likelihood for some error rates and
codes1: Scientific Reports 6, Article number: 22318 (2016)

I Work has also been done on Boltzmann machines &c. but I
will not talk about this here

1The example here is a simple code which matches the hardware graph



How to make this better

I First ‘run’ just as likely to find a good solution as the last
better if we could use info from previous tries

I Already have pretty good classical algorithms for many of
these problems, would be nice if these could help

I QA can be ‘fooled’ by broad local minima in energy
landscapes, good at sharp pointy landscapes, bad at broad
smooth ones
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How to do this: reverse annealing
H = −A(s)

∑
i hi σ
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i + B(s)

(∑
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z
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z
j

)

1. Start with easy problem annealer finds the (known) lowest
energy state with essentially 100% probability

2. Reprogram to hard problem

3. Turn up bit flipping terms to search the space, controlled by
value of s ′

4. Possibly wait for some time τ and finish protocol as normal



Time to think about the algorithms this enables

(logo courtesy of D-Wave systems Inc. used with permission)

I These protocols were added to D-Wave device controls earlier
this year

I Let’s think about how to use them algorithmically



The dumbest algorithm I can think of:
start in a random state

I Can this actually do anything useful?

I Yes! Can avoid getting stuck in a single broad local minima

I Can search different parts of the space and help get a fair
thermal sampling (important for some machine learning)



A numerical example of this ‘dumb’ algorithm

I Construct a small ‘toy’ problem with the energy landscape
given on previous slide

I Details not important for the discussion here

I Simulate with Monte Carlo, look at probability to find lowest
energy ‘ground’ state PGS



Better algorithms: inspiration from classical Monte Carlo

Parallel Tempering
I Multiple replicas at different temperatures

I Swap replicas by rules which obey detailed
balance

I Pswap(i , j) =

min
[
1, exp

((
1

T (i) −
1

T (j)

)
(Ei − Ej )

)]
Population Annealing

I Lower T for multiple replicas

I Probabilistically remove poorly performing
replicas and copy those which perform well

I Rules preserve average population and obey
detailed balance

I N̄(E ) = 1
Q exp

((
1

Told
− 1

Tnew

)
E
)

Probability to transition between states in terms of temperature T :
P(S(1)→ S(2)) = min[exp( (E(1)−E(2))

T )P(S(2)→ S(1)), 1]



Making quantum annealing versions

1. Replace updates with annealing runs consisting of calls to
annealer

2. Define ’energy’ and ’state’ as the lowest energy solution found
in an annealing run and the corresponding classical state

3. Replace T → Teff , effective temperature derived from s ′

4. Apply replica swapping/copying/deleting rules as usual



Including uncertainty by annealing qubits differently
What if we are more sure about some parts of our guess then
others? → anneal different qubits back to different points

0

1

s

t

reprogram

s’(Pi)

s’(Pj)

An extreme version of this, which excluded qubits where a value
was expected with high certainty has already been done H. Karimi
and G. Rosenberg Quantum Inf. Proc. 16(7):166 (2017) and H.
Karimi and G. Rosenberg Phys. Rev. E, 96:043312



Representing this graphically: Inference Primitive
Formalism

I Represent quantum annealing call as an inference primitive Φ,
takes state guess S ∈ {−1, 1} and uncertianty values
P ∈ [0, 0.5], outputs list of states G and energies E

I Processing function F represents classical processing → takes
any number (including zero) of annealer outputs (found states
G and energies E ) and finds new guess S and uncertainty
values P

I Easily generalized to multi-body drivers representing
uncertainty on clusters of qubits
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Basic Examples: traditional QA, and repeated local search
in this formalism

I Traditional QA (left) represented by initialization processing
function which takes no inputs and gives complete uncertainty
(Pi = 0.5∀i) on all qubits, followed by post processing
function

I Repeated local search (right) from running annealer many
times and using the output as an input to the next processing
function



More advanced algorithms: Parallel tempering and
Population annealing analogues

I Processing function F returns lowest energy state as guess
and gives all qubits the same uncertainty Pi = p∀i

I Assign effective temperature T to each p value and either:

1. exchange using Parallel tempering rules (left)

Pswap(i , j) = min
[
1, exp

((
1

T (i) −
1

T (j)

)
(Ei − Ej )

)]
2. kill or replicate states using population annealing rules (right)

N̄(E ) = 1
Q exp

((
1

Told
− 1

Tnew

)
E
)



Even more advanced algorithms: Genetic algorithms
I A processing function which takes more than one input is a

‘breeding’ step of a genetic algorithm
I For instance could be thermally reweighted sum2 ( u indicates

sum over unique states found)

Si = sgn(
∑Nu

j=1 G
(u)
j exp(−E

(u)
j

Teff
)),

Pi = 1
Z (
∑Nu

j=1 δG
(u)
j ,−Si

exp(−E
(u)
j

Teff
))

I Could be used to add crossbreeding to Population annealing
analogue, as shown below

2see: arχiv:1609.05875 for details



Summary and Outlook

I Quantum annealing is an alternative approach to gate based
quantum computers

I ‘Energy landscape’ approach conducive to many important
optimization and machine learning problems

I New features in annealing devices allow for (more) hybrid
quantum/classical algorithms

I I have recently been given NQIT funding to test these features

I It is an exciting time to work in quantum annealing!

I This subject is multidisciplinary by nature, plenty of room for
‘classical’ people to contribute without having to learn
quantum mechanics


