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Two different approaches to quantum computing

‘Gate’ based quantum computing

• Discrete quantum operations
on qubits

• Construct ‘circuits’ out of
these gates

• Detect and correct errors to
reduce effect of noise
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Quantum annealing

• Map optimization problem
directly to energies of
different states

• Allow quantum physics to
help search solution space

• Low temperature
environment helps solve
problems



(some) Advantages and disadvantages of each

‘Gate’ based quantum computing

• Can simulate arbitrary
quantum systems

• Error correction can get rid
of all noise in principle

• Could simulate quantum
annealing in principle

• Harder to build, largest
device is tens of qubits

• All noise likely to be harmful
rather than beneficial

Quantum annealing

• Easier to build, largest
device is thousands of
qubits

• Tolerant to noise, in fact
noise helps solve problems

• Naturally produces thermal
distributions

• Unclear if error correction is
feasible

• Cannot be used for some
quantum algorithms as
implemented



D-Wave Quantum annealing hardware

I Superconducting circuit devices with up to 2, 048 qubits in
16x16 ‘chimera’ configuration

I Operates in a cryostat at ≈ 0.015 K (200x colder than
interstellar space: 3K)
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Thermal and quantum fluctuations work together to solve problems



Obligatory slide: D-Wave controversy
Two separate controversies:

1) Are the dynamics actually quantum? Yes!

I Lots of evidence, most striking is simulation of extremely
quantum KT phase transition Nature 560 456–460 (2018)

I Classical models reproduce some behaviours, expected →
mean field approximation

2) Can it beat improve classical computing? Open question

I No conclusive speedup demonstrated yet

I Not what this talk is about

I Currently the only large scale device to study algorithmic
application of quantum mechanics

I Good science can be done regardless of answer to
question 2!



How to actually solve problems with these devices:
Optimization (traditional approach)

1. Map problem to one and two body terms of the appropriate
form (Ising model) Optimality of solution → energy

2. Embed in hardware graph by strongly linking qubits together
to form ‘logical’ qubits (3x3 chimera shown below)

3. Quantum dynamics finds low energy states, run many times
and take lowest energy solution

Each run is independent and starts from equal superposition ‘state
of maximal ignorance’ could do better by using information from
previous runs (more on this later)



Problem mapping example: maximum independent set
Have:
I Binary variables Zi ∈ {−1, 1}
I Minimisation over Hamiltonian made of single and pairwise

terms HIsing =
∑

i hiZi +
∑

j>i Ji ,jZiZj

Want:
I Maximum? independent set: how many vertexes on a graph

can we colour so none touch? → NP hard

Method:

1. For an edge between vertex i and j add Zi + Zj + ZiZj →
penalizes colouring (Z = 1) adacent vertexes

2. Add −λZi to reward coloured vertexes (0 < λ < 1)
?Not to be confused with maximal independent set, which is not a hard

problem



Minor embedding

I Strong ‘ferromagnetic’ (−ZiZj) coupling energetically
penalizes variables disagreeing

I If strong enough than entire ‘chain’ acts as a single variable

I Mathematically corresponds to mapping one graph to graph
minors of another

Can embed arbitrary graphs into the hardware graph with polyno-
mial (n2 for fully connected) overhead → Ising model restricted to
hardware graph is also NP-hard



Novel way to use a quantum annealer I: thermal sampling

Systems at finite temperatures (T = 1
β ) naturally tend toward a

‘Boltzmann’ distribution, probability of bitstring bi ∈ {0, 1}n with
energy Ei = 〈HIsing〉i is:

p(bi ) = exp(−βEi )∑
j exp(−βEj )

I βE acts as log-probability

I Each element of HIsing corresponds to probability of a
condition being met

I Can conditionally sample a distribution

Example: decoding of (classical) communications

I Data and parity checks both transmitted on noisy channel

I Want to conditionally sample: most likely series of errors
given parity check results



Maximum entropy versus maximum likelihood

Two ways to decode communications:
1) Maximum likelihood (ML)

I Correct single most likely series of errors

I Optimization problem: maximize probability

2) Maximum entropy (ME)

I Conditionally sample probability distribution → requires error
rate to be known at least approximately

I Take a ‘vote’ if a correction helps in more cases than it hurts,
do it

ME is always as good or better than ML, but harder to do

Can a quantum annealer doing approximate ME beat perfect ML?



Proof-of-concept experiments?

I Use small code which matches D-Wave hardware graph

I Perform exact ML decoding using Bucket tree elimination

I Perform approximate ME using D-Wave device → scale
problem by α to control effective temperature

I Compare, see which wins at different error rates
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Over some range, ME on real chip beats perfect ML!
see: Scientific Reports vol. 6, 22318 (2016) for details

?work done at UCL, supported by EPSRC and Lockheed Martin



The bigger picture for sampling

Beyond proof-of-concept (ongoing project):

I Embedded and encoded problems, can sampling still work

I When is the device able to approximately sample thermally?

I Hybrid quantum/classical algorithms to improve sampling

Boltzmann machines?

I Neural networks where sampling thermal distribution is
required to train

I Area of active research

Conditional sampling problems beyond (classical) decoding

I Can be extended to quantum error correction:
arχiv:1903.10254

I Many other areas where conditional sampling may be useful...



Novel way to use a quantum annealer II: reverse annealing
Hybrid (quantum/classical) algorithms

I Many good classical optimization algorithms already exist

I Need every advantage we can get to maximally use early
quantum hardware

Why reverse annealing?

I Easy inclusion of previously found solutions in algorithm calls
(search range controlled by parameter s ′:
s ′ = 1 → no search,s ′ = 0 → traditional annealing)

I Flexible: can be used with most existing techniques

I Now available on D-Wave devices



Cartoon example: energy landscape with rough and
smooth features (see: NJP 19, 2, 023024 (2017))

X

a)

b)

c)

a) QA gets stuck in broad local minima and cannot tunnel to
correct minima

b) Classical algorithms can easily explore the broad features,
while the annealer can explore the rough ones

c) Even random initialization can improve solution probabilities,
may hit rough region by chance



Proof-of-principle experiments

Construct a problem Hamiltonian with the following properties:

1. Wide false energy minimum which ‘tricks’ traditional quantum
annealing algorithm

2. Relatively narrow true minimum energy

3. Local minimum near true minimum for start state

start

False Minimum 
(broad)

True minimum
(narrow)

Joint work with Viv Kendon, funded by NQIT and EPSRC



Experimental results
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I Level crossing between true ground state and false minima at
magenta line → energetically preferable to be in narrow
minimum to right of line and broad to the left

I Anneal at maximum allowed rate, wait time (τ) of 20µS

I Frozen in starting state for small s ′, find true minimum at
moderate s ′, trapped for large s ′



Reverse annealing in algorithms?

1. Start from one ground state to find other ground states
(D-Wave whitpaper 14-1018A-A†)
I Finding other GS 150x more likely then forward

2. Search locally around classical solution (arχiv:1810.08584†)
I Start from greedy search solution
I Speedup of 100x over forward annealing

3. Iterative search (arχiv:1808.08721†)
I Iteratively increase search range until new solution found
I Forward annealing could not solve any, reverse solved most

4. Quantum simulation (Nature 560 456–460 (2018)†)
I Seed next call with result from previous
I Seeding with previous state makes simulation possible

5. Genetic algorithms (arχiv:1907.00707†)
I Used reverse annealing for mutations
I Out-performed state-of-the-art solvers by orders of magnitude

on some test cases

6. Proposals for Monte Carlo and Genetic like algorithms (NJP
19, 2, 023024 (2017) and arχiv:1609.05875)

?† indicates experimental results



Novel way III: solution robustness?

Using quantum annealers to find good solutions near other good
solutions
I Already known that annealers preferentially find good

solutions which are ‘near’ other good solutions → leverage
these effects algorithmically

I If a good solution is already known, can we use an annealer to
trade optimality for robustness?

Most optimal
but very 

constrained

Less optimal
but less 

constrained

E

solutions
Funded by BP, NQIT, and EPSRC, work with Simon Benjamin group

?outline of results, not time for full presentation, see my AQC 2019 or
BCTCS talk (nicholas-chancellor.me/presentations) or ask me for full version



A simple (motivational) example

Consider 16 qubit gadget from N. G. Dickson et. al. Nature
Comm. 4, 1903 (2013) :

Optimal
(E=-20)

Robust
(E=-16)
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I a is the ground state but

I A D-Wave 2000Q with 1, 280, 000 5µs runs finds b 1, 277, 824
times and a only 17 times



Outline of experiments and results

1. Set up problem with known solution

2. Add ‘gadgets’ which can increase frustration for an energy
cost

3. Reverse annealing starting from optimal solution, find robust
solutions

E

solutions

quantum
tunneling

results:

I Non-trivial tradeoff can be performed

I Can find better solutions than without reverse annealing



Take home messages

D-Wave quantum annealers

I Opportunity to do experimental CS on large quantum systems
→ much more experimentally mature than gate model

I No conclusive speedup yet, but science can be useful
regardless

Thermal sampling:

I Physical systems naturally tend to thermal distribution, useful
for conditional sampling

I Proof-of-principle experiment shows this can work

Reverse annealing:

I Ability to ‘seed’ known good solution allows many algorithmic
possibilities

I Can be used to trade of optimality for robustness of solutions


