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Talk structure

1. Background
I Quantum computing: comparison between quantum annealing

and ‘gate’ based QC
I Quick overview on D-Wave quantum annealers
I Mapping real problems to Ising models

2. Reverse annealing overview:
I Powerful new tool enabling hybrid quantum/classical

algorithms
I Experimental results showing reverse annealing searches

solution space locally

3. Finding robust solutions with reverse annealing
I Motivational example
I Chip scale results with binary and integer variables



Quantum computing

Big idea: harness the fundamental physics of discrete systems
(quantum mechanics) to solve important problems

I We know it works in theory: quantum search of unstructured
database with N entries in a time proportional to

√
N

I This is not possible without using quantum mechanics (only
option without QM is random guess or exhaustive search)

I ... but how do we use real, imperfect, quantum machines to
solve problems people care about



Optimization and sampling

Solution space can roughly be thought of as a structured database
with complex and unknown structure

I Finding optimal solutions to many real problems is important
and difficult

I Similar to ‘toy’ database example, may be able to get the
same kind of advantages

I Distributions of states which are some how ‘optimal’ may be
used in machine learning

Image: public domain taken from wikimedia commons



Two different approaches to quantum computing

‘Gate’ based quantum computing

• Discrete quantum operations
on qubits

• Construct ‘circuits’ out of
these gates

• Detect and correct errors to
reduce effect of noise
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Quantum annealing

• Map optimization problem
directly to energies of
different states

• Allow quantum physics to
help search solution space

• Low temperature
environment helps solve
problems



(some) Advantages and disadvantages of each

‘Gate’ based quantum computing

• Can simulate arbitrary
quantum systems

• Error correction can get rid
of all noise in principle

• Could simulate quantum
annealing in principle

• Harder to build, largest
device is tens of qubits

• All noise likely to be harmful
rather than beneficial

Quantum annealing

• Easier to build, largest
device is thousands of
qubits

• Tolerant to noise, in fact
noise helps solve problems

• Naturally produces thermal
distributions

• Unclear if error correction is
feasible

• Cannot be used for some
quantum algorithms as
implemented



D-Wave Quantum annealing hardware

I Superconducting circuit devices with up to 2, 048 qubits in
16x16 ‘chimera’ configuration

I Operates in a cryostat at ≈ 0.015 K (200x colder than
interstellar space: 3K)
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Thermal and quantum fluctuations work together to solve problems



How to actually solve problems with these devices:
Optimization (traditional approach)

1. Map problem to one and two body terms of the appropriate
form (Ising model) Optimality of solution → energy

2. Embed in hardware graph by strongly linking qubits together
to form ‘logical’ qubits (3x3 chimera shown below)

3. Quantum dynamics finds low energy states, run many times
and take lowest energy solution

Each run is independent and starts from equal superposition ‘state
of maximal ignorance’ could do better by using information from
previous runs (more on this later)



Problem mapping example: maximum independent set
Have:
I Binary variables Zi ∈ {−1, 1}
I Minimisation over Hamiltonian made of single and pairwise

terms HIsing =
∑

i hiZi +
∑

j>i Ji ,jZiZj

Want:
I Maximum? independent set: how many vertexes on a graph

can we colour so none touch? → NP hard

Method:

1. For an edge between vertex i and j add Zi + Zj + ZiZj →
penalizes colouring (Z = 1) adacent vertexes

2. Add −λZi to reward coloured vertexes (0 < λ < 1)
?Not to be confused with maximal independent set, which is not a hard

problem



Minor embedding

I Strong ‘ferromagnetic’ (−ZiZj ) coupling energetically
penalizes variables disagreeing

I If strong enough than entire ‘chain’ acts as a single variable

I Mathematically corresponds to mapping one graph to graph
minors of another

Can embed arbitrary graphs into the hardware graph with polyno-
mial (n2 for fully connected) overhead → Ising model restricted to
hardware graph is also NP-hard



Hybrid quantum/classical algorithms with reverse annealing
Why hybrid (quantum/classical)?
I Many good classical optimization algorithms already exist
I Need every advantage we can get to take advantage of early

quantum hardware

Why reverse annealing?
I Easy inclusion of previously found solutions in algorithm calls

(search range controlled by parameter s ′:
s ′ = 1 → no search,s ′ = 0 → traditional annealing)

I Flexible: can be used with most existing techniques
I Now available on D-Wave devices



Cartoon example: energy landscape with rough and
smooth features (see: NJP 19, 2, 023024 (2017))

X

a)

b)

c)

a) QA gets stuck in broad local minima and cannot tunnel to
correct minima

b) Classical algorithms can easily explore the broad features,
while the annealer can explore the rough ones

c) Even random initialization can improve solution probabilities,
may hit rough region by chance



Proof-of-principle experiments

Construct a problem Hamiltonian with the following properties:

1. Wide false energy minimum which ‘tricks’ traditional quantum
annealing algorithm

2. Relatively narrow true minimum energy

3. Local minimum near true minimum for start state

start

False Minimum 
(broad)

True minimum
(narrow)

Joint work with Viv Kendon, funded by NQIT and EPSRC



Experimental results ?
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I Level crossing between true ground state and false minima at
magenta line → energetically preferable to be in narrow
minimum to right of line and broad to the left

I Anneal at maximum allowed rate, wait time (τ) of 20µS
I Frozen in starting state for small s ′, find true minimum at

moderate s ′, trapped for large s ′
?For different proof-of-principle results, see: D-Wave white paper on

Reverse Quantum Annealing for Local Refinement of Solutions



Enhancing Robustness of Solutions using reverse annealing
Using quantum annealers to find solutions which are robust in the
sense that they can be adjusted to a modified problem definition at
little or no energy cost

I Already known that annealers preferentially find good
solutions which are ‘near’ other good solutions → leverage
these effects algorithmically

I If a good solution is already known, can we use an annealer to
trade optimality for robustness?

Most optimal
but very 

constrained

Less optimal
but less 

constrained

E

solutions
Joint work with Simon Benjamin, funded by BP, NQIT, and

EPSRC



Why might we want this?

I Adjust solution if we later learn that our problem definition
was slightly incorrect

I Penalty terms which are too expensive to encode on annealer
could be implemented by adjustments in post-processing
I Global non-linear constraints for instance are expensive to map

I Find ‘template’ solution which can be adjusted to solve many
similar but not identical problems

Most optimal
but very 

constrained

Less optimal
but less 

constrained

E

solutions



A simple (motivational) example

Consider 16 qubit gadget from N. G. Dickson et. al. Nature
Comm. 4, 1903 (2013) :

Optimal
(E=-20)

Robust
(E=-16)
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I a is the ground state but

I A D-Wave 2000Q with 1, 280, 000 5µs runs finds b 1, 277, 824
times and a only 17 times



Simple test: add global penalty and do greedy search
Global penalty:

E (q) = EIsing(q) + g f [h(q, r)]

where:
I q is a bitstring representing the state
I g is the strength of the penalty
I h is Hamming distance
I r is a random bitstring
I f is a single variable function:
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Starting in true ground state vs. state annealer finds
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Global penalty strength
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Potential strong enough to leave local minimum

Ground state start single shot

Annealer state start single shot

Ground state start best of 10

Annealer state start best of 10

True energy minimum

The large degeneracy in the state the annealer finds allows for
much more effective adjustment → higher energy but more robust



Reverse annealing to trade off optimality and robustness

Hypothetical situation:

I Already know the most optimal (planted) solution

I But we want more flexibility

I Are willing to ‘pay’ some optimality for a more flexible solution

Algorithm:

1. Start reverse annealing in planted solution

2. Search over a set range

3. Repeat many times

4. Keep most optimal solutions with certain robust features

E

solutions

quantum
tunneling



Free variable gadgets (binary version)

I Use planted solution method from Hen et. al. Phys. Rev. A
92, 042325 (2015) to make ‘hard’ problems with all −1 and
all +1 ground state

I Before constructing replace some unit cells with ‘free’ variable
gadgets
I All variables fixed if ‘outside’ varibles agree
I Become free (same energy for ±1 values of some variables) if

they do not (but energy unchanged)
I Energy penalty because has to leave planted solution

Gadget

Problem with planted solution (not shown)



The tradeoff

What is the best excess energy we can find with a given number of
gadgets free?
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Putting new solutions to the test

I Choose s ′ = 0.4444 dataset → contains some of the best
solutions

I Choose 10, 000 different instances of non-linear penalties

I Perform greedy search in each case and compare with planted
solution

I Compare for different penalty strengths
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A more realistic version: integer variables

Concept of ‘free’ variables is a bit artificial much more natural for
integer variables (broad versus narrow minima)

I Cumbersome to encode using traditional (one hot) method:
N value integer variable → N qubit fully connected subgraph

I Better ‘domain wall’ encoding (see arχiv: 1903.05068)
” ” → N − 1 qubit linearly connected subgraph

encoded value qubit configuration

0 1111

1 -1111

2 -1-111

3 -1-1-11

4 -1-1-1-1

1 1 1 1

-1 1 1 1

-1 -1 1 1

-1 -1 -1 1

-1 -1 -1 -1



One slide aside: Domain wall encoding is a powerful tool
for problem mapping

I Reduce number of qubits per variable by one
I Fewer connections within variable
I Structure tends to be better for embedding → technical

reasons I won’t discuss here see arχiv: 1903.05068
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I Red and blue → comparisions of domain wall versus one hot
I magenta and black → effect of more advanced ‘pegasus’

hardware graph

Domain wall encoding can make as much of a difference as
rengineered hardware graph!



Finding robust solutions over integer variables

E

value

0

2

0 1 ...

I Mixed integer/binary planted solution problem
I Unique minimum energy where binary part can be in lowest

energy state
I Range over which it cannot, but has wider minima in red

Perform same experiment as for integer gadgets, chain is said to be
‘soft’ if domain wall is in wider minima



One more trick: anneal offsets

I Anneal different qubits by different amounts → more
quantum fluctuations on the chains versus the other parts of
the problem

Annealing less with smaller offsets useful if fewer soft chains desired



Take away messages

Quantum annealing and gate base quantum computing

I Advantages and disadvantages to each

I Quantum annealing technology more mature

Solution robustness

I Optimality isn’t the only concern in the real world

I Natural dynamics of quantum annealers mean they can be
used to trade off optimality for robustness

Domain wall encoding

I Powerful new tool to encode integer variables into quantum
annealers



Supplementary slides



Constructing proof-of-principle Hamiltonian
I Hamiltonians with features 1 and 2 are already known: free

spin gadgets?

I Start with gadget from N. G. Dickson et. al. Nature Comm.
4, 1903 (2013)

a)

b)

I a: unique ground state (red, h=+1 violet h=-1)
I b: 256-fold degenerate excited state → false minimum
?See for instance: S. Boixo et. al. Nature Comm. 4, 3067 (2013)



Add local minimum and make tunable

Jt

1+hac 1+hac

I Starting state shown by arrows, ground state except for circled
spins flipped blue field is in - direction

I Jt controls barrier between start state and ground state.

I hac controls the value of scross
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Comparing performance at different s ′ values

I Choose non-linear penalty strength of 195

I Examine performance of solutions found at different values of
s ′
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I Best performance at intermediate values of s ′

I Smaller values of s ′ better for finding solutions with smaller
number of ‘free’ gadgets



Simple quantum Monte Carlo example

I Toy problem with broad false minima which stymies
traditional quantum annealing

I Reverse annealing starting in a random state can find true
ground state for large s ′via local search

I Behaves like traditional annealing for too small s ′ values

I see NJP 19, 2, 023024 (2017) for details



A huge number of possible reverse annealing algorithms

1. Simple version 1: search locally around best classical solution
I Any improvement is an immediate win
I But only likely to find solutions ‘near’ best classical

2. Simple version 2: search locally around randomly chosen state
I May avoid a broad false minima

3. Monte Carlo like algorithms (see NJP 19, 2, 023024 (2017))
I Transverse field parameter s ′ controls tradeoff between

exploration and exploitation similar to temperature in Monte
Carlo

I Quantum analogues of many known classical algorithms

4. Genetic algorithms (see arχiv:1609.05875)
I Compose guess from two or more known solutions
I Most general version requires more controls than currently

available



Extension: anneal qubits differently → local uncertainty
What if we are more sure about some parts of our guess then
others? → anneal different qubits back to different points

0

1

s

t

reprogram

s’(Pi)

s’(Pj)

An extreme version of this, which excluded qubits where a value
was expected with high certainty has already been done H. Karimi
and G. Rosenberg Quantum Inf. Proc. 16(7):166 (2017) and H.
Karimi and G. Rosenberg Phys. Rev. E, 96:043312



Representing this graphically: Inference Primitive
Formalism

I Represent quantum annealing call as an inference primitive Φ,
takes state guess S ∈ {−1, 1} and uncertianty values
P ∈ [0, 0.5], outputs list of states G and energies E

I Processing function F represents classical processing → takes
any number (including zero) of annealer outputs (found states
G and energies E ) and finds new guess S and uncertainty
values P

I Easily generalized to multi-body drivers representing
uncertainty on clusters of qubits

F

Φ

a)

b)

c)



Basic Examples: traditional QA, and repeated local search
in this formalism

I Traditional QA (left) represented by initialization processing
function which takes no inputs and gives complete uncertainty
(Pi = 0.5∀i) on all qubits, followed by post processing
function

I Repeated local search (right) from running annealer many
times and using the output as an input to the next processing
function



More advanced algorithms: Parallel tempering and
Population annealing analogues

I Processing function F returns lowest energy state as guess
and gives all qubits the same uncertainty Pi = p∀i

I Assign effective temperature T to each p value and either:

1. exchange using Parallel tempering rules (left)

Pswap(i , j) = min
[
1, exp

((
1

T (i) − 1
T (j)

)
(Ei − Ej )

)]
2. kill or replicate states using population annealing rules (right)

N̄(E ) = 1
Q exp

((
1

Told
− 1

Tnew

)
E
)



Even more advanced algorithms: Genetic algorithms
I A processing function which takes more than one input is a

‘breeding’ step of a genetic algorithm
I For instance could be thermally reweighted sum? ( u indicates

sum over unique states found)

Si = sgn(
∑Nu

j=1 G
(u)
j exp(−E

(u)
j

Teff
)),

Pi = 1
Z (
∑Nu

j=1 δG
(u)
j ,−Si

exp(−E
(u)
j

Teff
))

I Could be used to add crossbreeding to Population annealing
analogue, as shown below

?see: arχiv:1609.05875 for details


