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A brief note about terminology

For the purposes of this talk:

I Adiabatic quantum computation (AQC) → closed system
protocols where an eigenstate is maintained via the adiabatic
theorem of quantum mechanics

I Quantum Annealing (QA) → dissipation from open system
effects is the dominant mechanism

The terminology is not standardized and different groups may use
these terms differently



Our (Durham) group (underlined people are at AQC)
I Two PIs

I Viv Kendon → Reader coming to end of EPSRC established
career fellowship on hybrid quantum classical computing,
significant contributions on subject of quantum walks (among
other things)

I Nicholas Chancellor (me) → EPSRC UKRI innovation fellow,
three year project to look at hybrid algorithms and early use
cases

I One postdoc
I Jie Chen → Non-quantum background, recruited to help

develop use cases
I Four graduate students: Jemma Bennett, Laurentiu Nita,

Parth Patel, and Adam Callison (Imperial)



Reverse annealing for quantum subroutines

I Start in candidate solution, search within range defined by
s ′ ∈ [0, 1] (smaller is longer range)

I Allows classical algorithm to guide local searches on D-Wave
quantum annealers

I Figure is experimental data from a D-Wave device?
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?For experimental details see my 2018 AQC talk
(http://nicholas-chancellor.me/presentations.html) or come talk to me



Reverse annealing in algorithms?

1. Start from one ground state to find other ground states
(D-Wave whitpaper 14-1018A-A†)
I Finding other GS 150x more likely then forward

2. Search locally around classical solution (arχiv:1810.08584†)
I Start from greedy search solution
I Speedup of 100x over forward annealing

3. Iterative search (arχiv:1808.08721†)
I Iteratively increase search range until new solution found
I Forward annealing could not solve any, reverse solved most

4. Quantum simulation(Nature 560 456–460 (2018)†)
I Seed next call with result from previous
I Seeding with previous state makes simulation possible

5. Monte Carlo and Genetic like algorithms (NJP 19, 2, 023024
(2017) and arχiv:1609.05875)
I Transverse field parameter s ′ controls tradeoff between

exploration and exploitation similar to temperature
I Quantum analogues of many known classical algorithms
I Genetic like composes guess from two or more known solutions

?† indicates experimental results



What else can be done
Experiments so far:

I Simple but show major advantages → hint at promise of more
complex algorithms

I All use low energy solution to find lower energy solution

Can reverse annealing be used in other ways?
I Forcing exploration of solution space (will be explored as part

of NQIT partnership project)
1. Run traditional quantum annealing
2. Apply novelty search: objective is to find candidates which are

maximally different to known solututions
3. Seed RA with these candidates, and continually add to list of

seen solutions

I Finding candidates with other desirable properties: the subject
of this talk



Enhancing Robustness of Solutions using reverse annealing
Using quantum annealers to find solutions which are robust in the
sense that they can be adjusted to a modified problem definition at
little or no energy cost

I Already known that annealers preferentially find good
solutions which are ‘near’ other good solutions → leverage
these effects algorithmically

I If a good solution is already known, can we use an annealer to
trade optimality for robustness?
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Why might we want this?

I Adjust solution if we later learn that our problem definition
was slightly incorrect

I Penalty terms which are too expensive to encode on annealer
could be implemented by adjustments in post-processing
I Global non-linear constraints for instance are expensive to map

I Find ‘template’ solution which can be adjusted to solve many
similar but not identical problems
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A simple (motivational) example

Consider 16 qubit gadget from N. G. Dickson et. al. Nature
Comm. 4, 1903 (2013) :
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I a is the ground state but

I A D-Wave 2000Q with 1, 280, 000 5µs runs finds b 1, 277, 824
times and a only 17 times



Simple test: add global penalty and do greedy search
Global penalty:

E (q) = EIsing(q) + g f [h(q, r)]

where:
I q is a bitstring representing the state
I g is the strength of the penalty
I h is Hamming distance
I r is a random bitstring
I f is a single variable function:
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Starting in true ground state vs. state annealer finds
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The large degeneracy in the state the annealer finds allows for
much more effective adjustment → higher energy but more robust



Reverse annealing to trade off optimality and robustness

Hypothetical situation:

I Already know the most optimal (planted) solution

I But we want more flexibility

I Are willing to ‘pay’ some optimality for a more flexible solution

Algorithm:

1. Start reverse annealing in planted solution

2. Search over a set range

3. Repeat many times

4. Keep most optimal solutions with certain robust features

E

solutions

quantum
tunneling



Free variable gadgets (binary version)
I Use planted solution method from Hen et. al. Phys. Rev. A

92, 042325 (2015) to make ‘hard’? problems with all −1 and
all +1 ground state

I Before constructing replace some unit cells with ‘free’ variable
gadgets
I All variables fixed if ‘outside’ varibles agree
I Become free (same energy for ±1 values of some variables) if

they do not (but energy unchanged)
I Energy penalty because has to leave planted solution

Gadget

Problem with planted solution (not shown)

?Hard for the annealer to solve, may or may not be hard for all algorithms



Testing the mechanism

I D-Wave 2000Q, Use a variety of s’ to find best solution with a
set number of gadgets ‘free’

I Compare excess energy per ‘free’ gadget to version with
‘locked’ (no fluctuating variables) gadgets

I Bonus: anneal offsets → adjust fluctuations in gadgets
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Putting solutions to the test: greedy search with global
penalty

I Greedy search starting from best found solution with a given
number (0− 15) of free gadgets found

I Chip-sized version of global non-linear penalty used in
motivational example

I Able to find better solution when penalty is included
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A more realistic version: integer variables

Concept of ‘free’ variables is a bit artificial much more natural for
integer variables (broad versus narrow minima)

I Cumbersome to encode using traditional (one hot) method:
N value integer variable → N qubit fully connected subgraph

I Better ‘domain wall’ encoding (see arχiv: 1903.05068?)
” ” → N − 1 qubit linearly connected subgraph

encoded value qubit configuration

0 1111

1 -1111

2 -1-111

3 -1-1-11

4 -1-1-1-1

1 1 1 1

-1 1 1 1

-1 -1 1 1

-1 -1 -1 1

-1 -1 -1 -1

?New version appeared Monday!



Interactions between domain walls
Ising chains with single domain wall −1 boundary condition to the
left, +1 boundary to the right
I δi = 1

2(Zi + Zi−1), δi = 1 iff domain wall between i and i − 1,
0 otherwise

I Products of δi on different chains are quadratic → arbitrary
interactions between pairs of domain wall variables is qudratic

I ‘virtual’ Ising variables beyond end of chain → binary variable
is special N = 2 case of domain wall encoding

Use natural structure of problem to ‘spread out’ embedding

Four colouring example, ‘layered’ structure in Domain wall (right),
no structure in one hot, (left)



Domain wall encoding is a powerful tool for problem
mapping

I Reduce number of qubits per variable by one

I Fewer connections within variable

I Structure tends to be better for embedding
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embedding ratio 
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I Red and blue → comparisons of domain wall versus one hot

I magenta and black → effect of more advanced ‘pegasus’
hardware graph

Domain wall encoding can make as much of a difference as
re-engineered hardware graph! (see arχiv: 1903.05068)



Finding robust solutions over integer variables

E

value
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0 1 ...

I Mixed integer/binary planted solution problem
I Unique minimum energy where binary part can be in lowest

energy state
I Range over which it cannot, but has wider minima in red

Perform same experiment as for integer gadgets, chain is said to be
‘soft’ if domain wall is in wider minima



Beyond QA: quantum computing in continuous time

Three known ways in which continuous time quantum systems can
solve problems, each has reverse annealing-like algorithm:

1. AQC (closed system) slow transformation → eigenstate
maintained through adiabatic theorem of quantum mechanics
Quant. Inf. Proc.10(1):33–52, (2011)

2. QA (open system) → low temperature dissipation finds low
energy states reverse annealing relies on this dissipation

3. Quantum Walk (QW)→ dynamics with a fixed Hamiltonian
Phys. Rev. A 95, 052309 (2017)?

Is there a method similar to reverse annealing which uses all three?
QA

QW

Low Temp.
Dissipation

Low Temp.
Dissipation

AQC
?Used to match energy, so subtly different than RA



Solving optimisation problems with QW?

Consider the following:

1. Transverse field Ising Hd = −
∑n

i=1 σ
x
i ,

Hproblem =
∑n

i=1

∑n
j=1 Jijσ

z
i σ

z
j

H = γ Hd + Hproblem

2. Start in ground state of Hd , |ψ(t = 0)〉 = |ω〉 = 1
2n

∑2n

i=1 |i〉
3. By symmetry 〈ω | Hproblem | ω〉 = 0 ∴
〈ψ(t = 0) | H | ψ(t = 0)〉 = −γ n

4. 〈ψ(t > 0) | Hd | ψ(t > 0)〉 ≥ −γ n ∴ by energy conservation
〈ψ(t > 0) | Hproblem | ψ(t > 0)〉 ≤ 0 dynamics preferentially
seeks out states with low energy w.r.t. Hproblem

I Applied to Sherrington-Kirkpatric spin glass:
arχiv:1903.05003 (see also: arχiv:1904.13339)

I Like extreme annealing schedule consisting of pause bracketed
by instantaneous quenches

?Work with Viv Kendon (see prior talk) and Adam Callison



Interpolating between AQC and QW

The energy conservation argument from the previous slide can be
extended to any monotonic (closed system) quench

H(t) = A(t)Hd + B(t)Hproblem
A(t)

B(t)
≥ A(t + δt)

B(t + δt)
∀t

Sketch of proof:

1. Trotterize time evolution: A(t)→ A(t + δt) and
B(t)→ B(t + δt) and apply
|ψ(t + δt)〉 = exp(−iH(t)δt)|ψ(t)〉 in separate steps

2. Rescale time so that Hamiltonian always resembles quantum
walk Heff (γ(t)) = γ(t)Hd + Hproblem

3. In rescaled version γ(t) ≥ γ(t + δt) ∴
〈Heff (γ(t))〉ψ(t) − γ(t) n ≥ 〈Heff (γ(t + δt))〉ψ(t) − γ(t + δt) n

4. Because 〈Heff (γ(t))〉ψ(t) ≥ −γ(t) n ∀t , 〈Hproblem〉ψ(t) ≤ 0 ∀t



Biased driver Hamiltonian? See poster 26 for more...
Define driver Hamiltonian using fields which are not (completely)
transverse Hd =

∑n
i=1− cos(θ)σx

i − gi sin(θ)σz
i

I Start in ground state of Hd :
|ψ(t = 0)〉 =

⊗n
i=1

1√
2+2 gi cos(θ)

[(1 + gi cos(θ))|0〉+ sin(θ)|1〉]
I Starting state biased toward classical bitstring g , gi ∈ {−1, 1}
I Closed system with monotonic sweep (including QW), time

evolution improves the guess (on average):

〈Hproblem〉ψ(t) ≤ 〈Hproblem〉ψ(0)
I Ground state is optimal solution so adiabatic theorem holds

and dissipation can assist as well
Can use AQC, QW and QA mechanisms simultaneously
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?with Laur Nita, Jie Chen, Adam Callison, Viv Kendon and Matthew Walsh.
Note related work: arχiv:1906.02289 and Chinese Physics Letters, 30 1 010302



Take home messages

Reverse annealing

I Promising experimental results based on simple applications

I Find lower energy solution from low energy

I Can be used in other ways, finding more robust solutions is
one example

Domain wall encoding

I Can reduce embedding overhead for (some) problems as much
as re-engineered problem graph

Multiple mechanisms in continuous time

I Hybrid subroutines which use multiple mechanisms at once

I Can prove advantage on average in closed system case


