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Relevant UK projects for this audience

Collaborative computational project on quantum computing
(CCP-QC)

I Work with other CCPs (academic projects) to find uses fro
quantum computing within scientific research

I Idea is to use quantum computing to solve hard problems
which come up in academic research rather than industry

I https://ccp-qc.ac.uk/

Quantum Enhanced and Verified Exascale Computing (QEVEC)

I Work on how quantum coprocessors can (eventually) support
exascale computing

I Multiple projects looking at a variety of applications

I https://excalibur.ac.uk/projects/qevec/

Contact Viv Kendon at viv.kendon@strath.ac.uk if you are inter-
ested in potential collaborations



What this talk is about (+ collaborator acknowledgments)

Work I have done toward understanding how quantum annealing
solves problems in increasingly realistic settings

1. How do we understand anneals far from the adiabatic limit?
(and even discontinuous)
I Work with Adam Callison, Max Festenstein, Jie Chen,

Laurentiu Nita, and Viv Kendon

2. How does noise effect search range in dissipation-driven
annealing?
I Work with Viv Kendon

3. How does the encoding of optimisation problems affect
dynamics?
I Work with Jesse Berwald and Raouf Dridi



Adiabatic quantum computing

Traditional picture:

I Map an NP-hard optimization problem to a Hamiltonian,
unknown ground state is solution

I Slowly change from a (driver) Hamiltonian with an easily
prepared ground state to problem Hamiltonian

I Adiabatic theorem of quantum mechanics → success
probability arbitrarily close to 100 % by running long enough
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Advantages and disadvantages of this picture

Theoretically satisfying

• Algorithm is effectively deterministic → “always” succeeds

• Intuitive picture involving only ground and first excited state

Let’s assume P6=NP

• Algorithm succeeds roughly 100% of the time

• Total runtime needs to be exponential in size of problem →
system needs to remain coherent for exponentially long time?

?There are ways to apply more sophisticated adiabatic theorem to faster
quenches in some cases (see: Crosson and Lidar, Nature Reviews Physics
volume 3, pages 466-489 (2021)), but that isn’t the topic of this talk



What can be done?
Restore coherence somehow

• Error correction, difficult to
do in continuous time, but
progress being made

• Low temperature dissipation
can restore coherence →
would have to be very low
temperature

• Have to mitigate all errors
for a very long time

• Not the subject of this talk

image public domain from wikimedia commons

Succeed with low probability

• Total runtime is still
exponential in problem size

• Each run is short →
exponentially many needed
to hit right answer

• Exponentially low success
each run is conceptually
unsatisfying...

• ... but much less
demanding for coherence

Lottery



Rapid quenches?
Energy conservation argument extended to any monotonic (closed
system) quench

H(t) = A(t)Hdrive + B(t)Hproblem
A(t)

B(t)
≥ A(t + δt)

B(t + δt)
∀t

Sketch of proof:

1. Trotterize time evolution: A(t)→ A(t + δt) and
B(t)→ B(t + δt) and apply
|ψ(t + δt)〉 = exp(−iH(t)δt)|ψ(t)〉 in separate steps

2. Rescale time so that Hamiltonian always resembles (energy
conserving) quantum walk Heff (Γ(t)) = Γ(t)Hdrive + Hproblem

3. In rescaled version Γ(t) ≥ Γ(t + δt) (lowest 〈Hdrive〉 is −n) ∴
〈Heff (Γ(t))〉ψ(t) − Γ(t) n ≥ 〈Heff (Γ(t + δt))〉ψ(t) − Γ(t + δt) n

4. Because 〈Heff (Γ(t))〉ψ(t) ≥ −Γ(t) n ∀t , 〈Hproblem〉ψ(t) ≤ 0 ∀t

Details can be found in Callison et. al. PRX Quantum 2, 010338



A very general result!
For result to hold (to be better than random guessing on average):

1. Monotonic Γ(t) ≥ Γ(t + δt) where Γ(t) = A(t)
B(t)

2. Start in ground state of Hdrive

3. Driver not gapless → not a concern for real problems

What is allowed:

1. No limit on how fast algorithm runs

2. Discontinuities in Γ(t) are ok

3. Hdrive does not need to be diagonal in an orthogonal basis to
Hproblem → starting state can be biased



Intuitive example: two stage quantum walk

Perform a quantum walk at γ1, and than use result as an input state
for a second walk at γ2 < γ1
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I Energy expectations: Green= γ1,2〈Hdrive〉; Blue= 〈Hproblem〉 ;
Gold= γ1,2〈Hd〉+ 〈Hproblem〉

I Total energy conserved except for at dashed line where γ
decreases

I Non-instantaneous quench effectively infinite stage quantum
walk



Why is the rapid quench result important?

General, but rather weak:
Any monotonic quench at least as good as measuring the initial
state

1. Design protocols to maximize dynamics → don’t need to
worry about dynamics being counter-productive

2. A biased search can already start from a very good guess
more discussion on this later

3. Mechanism to understand dynamics very far from adiabatic
limit



Quantifying dynamics in a two state subspace
Transfer coefficent, transfer between computational basis states:
T (jk) = 2Γ(t)|〈k|Hdrive|j〉|

2Γ(t)|〈k|Hdrive|j〉|+|∆jk | (where ∆jk is the total difference in

diagonal matrix elements) Blue in figure

Disequilibrium coefficient, amount which Hproblem breaks the initial
equilibrium:
D(jk), defined the same as T (jk), but in the diagonal basis of Hdrive

rather than the computational basis Gold in figure

χ(jk) = T (jk) D(jk) quantifies total dynamics Green in figure

Unlike spectral gap, these quantities can be efficiently calculated
for large problems!



Finding optimal annealing schedules

H(t) = A(t)Hdrive + B(t)Hproblem

I Define A(t) = (1− s(t)) and B(t) = s(t)

I Set ∂s
∂t ∝ 1

χ

I Compare to linear schedule s ∝ t for single SK instance

0.0 0.2 0.4 0.6 0.8 1.0

t/T

0.0

0.2

0.4

0.6

0.8

1.0

s

Instance ovcjhwbhtcpcvwicoxpdpvjzqojril

T= 2.0

Linear

Heuristic

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P

Instance ovcjhwbhtcpcvwicoxpdpvjzqojril

T= 2.0

Linear

Heuristic

Heuristic performs better than linear schedule!



Hybrid protocols using this mechanism?
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tunnelling
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tunnelling
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solution

smooth
region

rough
region

classical algorithm

QA finds wide
minima

Known techniques:
Dissipative reverse annealing NC 2017 New J. Phys. 19 023024 as
implemented on D-Wave devices
Relies on dissipation, not suitable for coherent algorithms

Coherent reverse annealing Perdomo-Ortiz et. al. Quantum Inf
Process (2011) 10: 33. doi:10.1007/s11128-010-0168-z

Involves three separate Hamiltonians, not compatible with rapid
sweep proof in Callison et. al. PRX Quantum 2, 010338

Biased driver Hamiltonian Chinese Physics Letters, 30 1 010302
and Tobias Graß Phys. Rev. Lett. 123, 120501 (2019)

Compatible with proof in Callison et. al. PRX Quantum 2, 010338,
can apply the mechanisms discussed here



Solving problems in a dissipative setting
Ising model gives us rich control to design energy landscapes, com-
pare behaviour of D-Wave quantum annealers with different noise
levels

  

  

  

True Minimum

Starting State

False Minimum

start

False Minimum 
(broad)

True minimum
(narrow)

Core idea: starting state near a true minima, and further away from
a false minima which would ‘trick’ forward annealing
dashed coupling Jt controls barrier between start and true minimum

Details in Chancellor and Kendon PRA 104, 012604 (2021)



Need more fluctuations on less noisy QPU

I Dissipation mediates reverse annealing local search, less
coupling to bath → energy dissipates more slowly

I For the same runtime more fluctuations (higher Γ) is needed

I Suggests that spin bath polarisation is not the dominant effect
here, otherwise noisier version would need higher Γ
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More exciting difference: higher peak with noisier QPU

Why is this exciting?

False minimum is further away, more tunnelling from start state
means longer range search with lower noise
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I Top left: lower noise true min probability, Right: higher,
bottom, peak values, bottom, peak value versus Jt

I As it gets harder to tunnel to the true minimum the difference
between the higher and lower noise QPUs grows



A simple model: initial branching then tunnelling

Pfalse(τ) = 1− [1− Rfalse] exp(−κτ)
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I Branching ratio Rfalse indeed higher on lower noise QPU(left
fit, squares on bottom)

I Don’t have time for full details, see Chancellor and Kendon
PRA 104, 012604 (2021)

I Confirms model, lowering noise causes more branching to
further local minima → longer range search



Effect of problem structure and encoding?

Consider higher-than-binary dis-
crete problems; appear often in real world optimisation, for example:

© A truck can go down any of three roads...

© A tasks can be scheduled at any of five times...

© A component can be placed any of seven places on a chip...

© Define two index objects:

xi ,α =

{
1 variable i takes value α

0 otherwise

© Discrete Quadratic models, (DQM), made from pairwise
interactions of x terms:

HDQM =
∑
i ,j

∑
α,β

D(i ,j ,α,β)xi ,αxj ,β

?Details in arχiv:2108.12004



Discrete variables into binary, three ways
Variable size=m

performance metric binary one-hot domain wall?

# binary variables dlog2(m)e m m − 1

# couplers 0 if m = 2n n ∈ Z
m (m − 1) m − 2

for encoding complicated otherwise

intra-variable connectivity N/A or complicated complete linear

maximum order
2 dlog2(m)e 2 2

needed for two variable interactions

Binary= assign bitstrings to configurations
One hot= constrain variables so exactly one can be 1
Domain wall= new encoding w/ better performance?

encoded value qubit configuration

0 1111

1 -1111

2 -1-111

3 -1-1-11

4 -1-1-1-1

1 1 1 1

-1 1 1 1

-1 -1 1 1

-1 -1 -1 1

-1 -1 -1 -1
?For details see: Chancellor, Quantum Sci. Technol. 4 045004
?Chen et. al. IEEE Transactions on Quantum Engineering 3102714 (2021)



Quadratic Assignment Problem (QAP)

Assign m facilities to m locations such that a single facility is only
assigned to one location and vice-versa

Bipartite
Matching

=

Complete 
Graph 

Coloring

© General (hard) version → pairs of assignments are weighted,
we use unweighted → not hard, but symmetry and large
degeneracy useful for analysis

© Can be thought of as a colouring problem on an m-node fully
connected graph

© m!-fold degenerate ground state



Aside, improved performance on max three colouring?

Green=statistically significant result (95% confidence)
Adv. dw/oh 2000Q dw/oh dw Adv./2000Q oh Adv./2000Q (dw, Adv.)/(oh, 2000Q) (dw, 2000Q)/(oh, Adv.)

5 node (b,w) 0 0 0 0 0 0 0 0 0 0 0 0

5 node p

10 node (b,w) 42 0 37 0 2 0 19 21 39 0 40 0

10 node p 2.27× 10−13 7.28× 10−12 2.50× 10−1 6.82× 10−1 1.82× 10−12 9.09× 10−13

15 node (b,w) 85 2 95 3 32 34 70 22 94 1 91 2

15 node p 2.47× 10−23 4.95× 10−25 6.44× 10−1 2.67× 10−7 2.42× 10−27 4.41× 10−25

20 node (b,w) 99 0 100 0 43 41 94 3 100 0 93 2

20 node p 1.58× 10−30 7.89× 10−31 4.57× 10−1 9.60× 10−25 7.89× 10−31 1.15× 10−25

25 node (b,w) 100 0 FAIL 66 20 FAIL FAIL 98 2

25 node p 7.89× 10−31 3.33× 10−7 3.98× 10−27

30 node (b,w) 100 0 FAIL 72 20 FAIL FAIL 97 2

30 node p 7.89× 10−31 2.30× 10−8 7.81× 10−27

35 node (b,w) 100 0 FAIL FAIL FAIL FAIL FAIL FAIL

35 node p 7.89× 10−31

40 node(b,w) 100 0 FAIL FAIL FAIL FAIL FAIL FAIL

40 node p 7.89× 10−31

I Domain-wall on 2000Q beats one-hot on Advantage (100
total each size b=number better, w=number worse,
p=statistical significance)

I Trend continue up to size where no longer possible to embed
in 2000Q (FAIL), similar results for k-colouring (not shown)

I Worth trying if you have discrete problems to encode

?Chen et. al. IEEE Transactions on Quantum Engineering 3102714 (2021)



Experimental tests (unweighed assignment)

Run on D-Wave Advantage annealer 10 embeddings at each size
with 10, 000 reads for total of 100, 000 reads at each size (default
settings otherwise)
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Rate of feasible solutions

Stars represent fractions of returned solutions which are feasible
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One explanation: thermal excitations

Symmetry of problem means Metropolis algorithm converges
quickly, efficient thermal sampling
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Probability of feasible solution is better at higher temperature with
domain-wall encoding, makes sense one fewer qubit → smaller
solution space



Dynamic range squeezing

Minor embedding chains need to be stronger for larger problems →
less range left for problem, effectively higher temperature ?
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Thermal equilibrium model

Assuming an energy scale of ≈ 5 GHz at the freezing point we find
feasible probability for a purely thermal model

4 6 8 10
m

10 3

10 2

10 1

100

Pr
ob

ab
ilit

y 
of

 b
ei

ng
 fe

as
ib

le one hot
domain wall

© Shows same crossover as real data

© Not in the same location, but...

1. Estimate of energy scale is rough
2. Not all sizes will freeze at the same time each will have

different scales



Estimate energy scale
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Effective temperature and freeze point

3 4 5 6 7 8 9 10
m

0.000

0.025

0.050

0.075

0.100

0.125

0.150
T/

m
ax

im
um

 c
ou

pl
in

g

domain-wall
one-hot
95% confidence interval
95% confidence interval

3 4 5 6 7 8 9 10
m

0.3

0.4

0.5

0.6

0.7

0.8

s

domain wall
one hot
95% confidence interval
95% confidence interval

© Already taken into account embedding strength

© Domain-wall version effectively sampled at lower temperature
↔ later freezing

Encoding has a strong effect on the dynamics of how the
problem is solved



Why might this be true?

© One hot value cannot be changed by flipping a single binary
variable

© Domain wall can therefore easier for transverse field to update
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Want to try it yourself?

Python code to create domain wall encodings available at
https://collections.durham.ac.uk/: “Domain wall encoding of in-
teger variables for quantum annealing and QAOA [dataset]”?

?https://doi.org/10.15128/r27d278t029



Key points

Non-traditional (i.e. not relying on adiabatic theorem) approaches
to understanding quantum annealing in more realistic settings exist
and are useful

Same structures which make quantum annealers versatile for solving
problems allow for sophisticated energy landscapes for experiments

Reducing noise can and does lead to a longer range search of solution
space

We need a better understanding of the interface between problem
encoding and physical dynamics

Encoding can have a fundamental and dramatic effect on freeze time


