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Outline

1. SAT, max-SAT, frustration, non-linear constraints, and
sampling

2. Spectral Mapping with Ising Spins
I Arbitrary max-SAT on the chimera graph
I Aside: Another way to do parity checks
I A better mapping

3. Applications
I Classical communications: turbo code decoder
I Particle simulation



Penalty formalism for SAT

Hamiltonian to implement clauses:

H(a) =
∑
i

Pen({a(l)i })

a
(l)
i ∈ {a1, a2, a2, ...} ∪ {¬a1,¬a2,¬a3, ...}

Pen({a(l)})

{
≥ g a

(l)
i = 0, ∀i

= 0 otherwise.

I Violating any clause gives an energy of at least g

I zero energy state satisfies all clauses

I Lowest energy state not meaningful if cannot satisfy
simultaneously



Alternate approach: penalize every clause violation equally

Spec({a(l)}) =

{
g a

(l)
i = 0, ∀i

0 otherwise.

H(a) =
∑
i

Spec({a(l)i }) = N(a) g

I N(a) is the number of clauses violated by bitstring a

I minimum energy bitstring satisfies the maximum number of
clauses

I Boltzmann distribution can be used for maximum entropy
inference → will come back to this



Making clauses using the Ising model (arXiv:1604.00651)
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I couple all logical bits to each other and to all ancillas

I bias ancillas so that ancilla 1 will flip if 1 or more logical bits
are up, 2 if 2 etc...

I ancilla couplings and couplings between bits cancel, fields on
ancillas can assign arbitrary penalties

I single bit sector corresponds to clause on previous slide, can
also create parity checks (⊕ clauses) arXiv:1603.09521



simple example

Logical bit values Ancilla values E

1111 0000 0
0111, 1011, 1101, 1110 0001 0
0011, 0101, 0110, 1001, 1010, 1100 0011 0
1000, 0100, 0010, 0001 0111 0
0000 1111 g

I Example in which applying a field on the last ancilla applies
an OR clause q1 ∨ q2 ∨ q3 ∨ q4

I Applying to first ancilla will instead apply AND
q1 ∧ q2 ∧ q3 ∧ q4

I Alternating ancilla fields can apply XOR q1 ⊕ q2 ⊕ q3 ⊕ q4
I see: arXiv:1604.00651 for Hamiltonian details



Quick Aside: Non-linear Constraints

Logical bit values Ancilla values E

1111 0000 E4

0111, 1011, 1101, 1110 0001 E3

0011, 0101, 0110, 1001, 1010, 1100 0011 E2

1000, 0100, 0010, 0001 0111 E1

0000 1111 E0

I Energies can be assigned arbitrarily: can implement non-linear
constraints on the number of ones



max-SAT on the chimera

I Use Choi complete graph minor embedding plus rows of
ancillas to implement clauses arXiv:1604.00651



Drawbacks of this technique

Conceptually nice to demonstrate direct mapping but....

I high connectivity makes mapping inefficient

I some clauses, ex. (a1 ∨ a2) ∧ (a3 ∨ a4) ∧ ... require an
exponentially growing number of ancillas

I will show how both these problems can be addressed after a brief
(1-slide) aside



one slide aside: another way of implementing parity checks

Proposed by other authors in arXiv:1604.02359 , alternate
formulation in arXiv:1603.08554

Triangles → effective 3 body coupling gadgets, s → logical bit,s a
→ ancillas

I parity of {s} is even → no domain wall (unique), odd →
domain wall (degenerate)

I degeneracy can be removed by weakening any of the 3 local
gadgets, → necessary for thermal sampling



Ancilla representations for AND (∧), OR (∨), and XOR
(⊕) on 2 bits

Using the methods of arXiv:1604.00651, single ’indicator’ bit
corresponds to result of any of these operations

I ∧ and ∨ ’mark’ single states, so single bits act as ’indicators’
for these clauses

I second copy of gadget Hamiltonian needed to create single bit
corresponding to ⊕,

I alternatively 3 bit gadget acts as indicator for ⊕



Chaining 2 bit Hamiltonians to make more complex clauses

I Apply gadget to ’indicator’ ancillas to create more complex
clauses

I Fields on indicators enforce clauses

I Any clause which can be efficiently written using ∧, ∨, ⊕, ¬,
and parenthesis can be implemented efficiently

I Does not require full connectivity



Example: Classical Decoding, Turbo code implementation

t1 t2 t3 t4

s1 s2 s3 s4

t5t7 t6

t8 t10

t9 t11

t12

s5 s6

sp(1) sp(2) sp(3) sp(4) sp(5) sp(6)

permuter

I Interleaved convolution code: apply strings of ⊕ of even
length on bits (s1 ⊕ s2), (s1 ⊕ s2 ⊕ s3 ⊕ s4) ...

I odd length strings of ⊕ applied to random permutation
(sp(1)), (sp(1) ⊕ sp(2) ⊕ sp(3)) ...

I approaches Shanon limit for large block length



Turbo code decoder using minor embedding

I Black lines → embedding bonds

I red lines → ancilla couplings

I note similarity to ideas presented in arXiv:1603.08554v2



Application: Particle Simulation

Higher dimensional analogue of 1-D domain walls using high
locality operators, red squares → spins, pink polyhedra →
couplers, circles → particle sites, lines → allowed hops

Hparticle = −m

2

∑
i

∏
j∈di

σzj − τ
∑
i

σzi −∆
∑
i

σxi

Can this Hamiltonian be realized perturbatively using our gadget?



Realizing particle simulation Hamiltonian perturbatively

Using our gadget for each coupler
What works:

I All logical bit flips occur at 3rd order in perturbation theory
(flip 2 ancillas plus bit)

I All transitions go through intermediate states with the same
energy

I ∴ bit flips (σxi ) realized perturbatively with no modifications

What Doesn’t:

I Second order fluctuations are not the same for every logical
state → some energetically favored over others

I will show how to rectify this on next slide



Matching fluctuation strengths with additional ancillas

’fluctuation control’ ancillas (f), coupled to ancillas

Hfc =
∑
i

(Ji ,f (−σzi ,a + σzi ,aσ
z
f ) + |Ji ,f |σzf ) + h0f σ

z
f

I h0f > 0 no effect on Ising coupling

I {Ji ,f } tuned to control fluctuations

I more than 1 such ancilla can be added



Conclusions

I Alternate method for mapping problems based on max-SAT
formalism

I Individual elements claimed together to realize any clause
which can be written efficiently

I Example applications:
I Classical message decoding: Turbo Code
I Particle simulation: realize Hamiltonian perturabtively



Quick Plug for Some of my Other Work

Modernizing Quantum annealing using Local Search:
arXiv:1606.06833


