max-SAT, multi-body frustration, and multi-body sampling on a two local Ising system AQC 2016 Los Angeles

Nick Chancellor

June 29, 2016

イロト 不得 トイヨト イヨト

3

Acknowledgements

Collaborators:

Stefan Zohren (Oxford) Paul Warburton (UCL) Simon Benjamin (Oxford) Stephen Roberts (Oxford)

Supervisor:

Viv Kendon (Durham)

Funding:

NC: UK Engineering and Physical Sciences Research Council (EPSRC) SZ: Lockeed Martin, Nokia, and EPSRC PW: Lockheed Martin and EPSRC SB: EPSRC

Outline

- 1. SAT, max-SAT, frustration, non-linear constraints, and sampling
- 2. Spectral Mapping with Ising Spins
 - Arbitrary max-SAT on the chimera graph
 - Aside: Another way to do parity checks
 - A better mapping
- 3. Applications
 - Classical communications: turbo code decoder

Particle simulation

Penalty formalism for SAT

Hamiltonian to implement clauses:

$$H(a) = \sum_{i} Pen(\{a_{i}^{(l)}\})$$
$$a_{i}^{(l)} \in \{a_{1}, a_{2}, a_{2}, ...\} \cup \{\neg a_{1}, \neg a_{2}, \neg a_{3}, ...\}$$
$$Pen(\{a^{(l)}\}) \begin{cases} \geq g & a_{i}^{(l)} = 0, \ \forall i \\ = 0 & \text{otherwise.} \end{cases}$$

- Violating any clause gives an energy of at least g
- zero energy state satisfies all clauses
- Lowest energy state not meaningful if cannot satisfy simultaneously

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

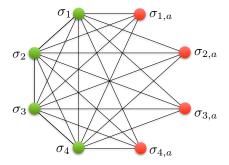
Alternate approach: penalize every clause violation equally

$$Spec(\{a^{(l)}\}) = \begin{cases} g & a_i^{(l)} = 0, \forall i \\ 0 & \text{otherwise.} \end{cases}$$
$$H(a) = \sum_i Spec(\{a_i^{(l)}\}) = N(a)g$$

- N(a) is the number of clauses violated by bitstring a
- minimum energy bitstring satisfies the maximum number of clauses
- ▶ Boltzmann distribution can be used for maximum entropy inference → will come back to this

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Making clauses using the Ising model (arXiv:1604.00651)



- couple all logical bits to each other and to all ancillas
- bias ancillas so that ancilla 1 will flip if 1 or more logical bits are up, 2 if 2 etc...
- ancilla couplings and couplings between bits cancel, fields on ancillas can assign arbitrary penalties
- ► single bit sector corresponds to clause on previous slide, can also create parity checks (⊕ clauses) arXiv:1603.09521

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

simple example

Logical bit values	Ancilla values	Е
1111	0000	0
0111, 1011, 1101, 1110	0001	0
0011, 0101, 0110, 1001, 1010, 1100	0011	0
1000, 0100, 0010, 0001	0111	0
0000	1111	g

- ► Example in which applying a field on the last ancilla applies an OR clause q₁ ∨ q₂ ∨ q₃ ∨ q₄
- ► Applying to first ancilla will instead apply AND q₁ ∧ q₂ ∧ q₃ ∧ q₄
- ▶ Alternating ancilla fields can apply XOR $q_1 \oplus q_2 \oplus q_3 \oplus q_4$
- see: arXiv:1604.00651 for Hamiltonian details

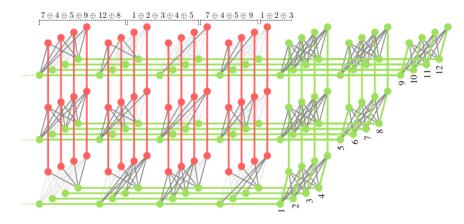
Quick Aside: Non-linear Constraints

Logical bit values	Ancilla values	Е
1111	0000	E ₄
0111, 1011, 1101, 1110	0001	E ₃
0011, 0101, 0110, 1001, 1010, 1100	0011	E ₂
1000, 0100, 0010, 0001	0111	E_1
0000	1111	E ₀

Energies can be assigned arbitrarily: can implement non-linear constraints on the number of ones

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

max-SAT on the chimera



 Use Choi complete graph minor embedding plus rows of ancillas to implement clauses arXiv:1604.00651

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

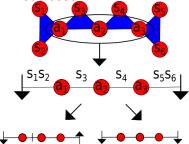
Conceptually nice to demonstrate direct mapping but....

- high connectivity makes mapping inefficient
- Some clauses, ex. (a₁ ∨ a₂) ∧ (a₃ ∨ a₄) ∧ ... require an exponentially growing number of ancillas

I will show how both these problems can be addressed after a brief (1-slide) aside

one slide aside: another way of implementing parity checks

Proposed by other authors in arXiv:1604.02359, alternate formulation in arXiv:1603.08554

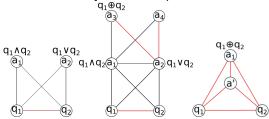


Triangles \rightarrow effective 3 body coupling gadgets, s \rightarrow logical bit,s a \rightarrow ancillas

- parity of {s} is even → no domain wall (unique), odd → domain wall (degenerate)
- ► degeneracy can be removed by weakening any of the 3 local gadgets, → necessary for thermal sampling

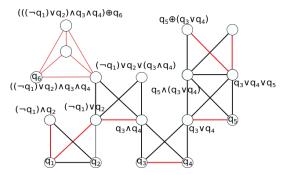
Ancilla representations for AND (\land), OR (\lor), and XOR (\oplus) on 2 bits

Using the methods of arXiv:1604.00651, single 'indicator' bit corresponds to result of any of these operations



- ► ∧ and ∨ 'mark' single states, so single bits act as 'indicators' for these clauses
- ► second copy of gadget Hamiltonian needed to create single bit corresponding to ⊕,
- \blacktriangleright alternatively 3 bit gadget acts as indicator for \oplus

Chaining 2 bit Hamiltonians to make more complex clauses

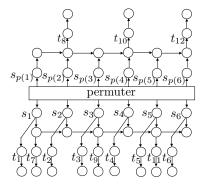


- Apply gadget to 'indicator' ancillas to create more complex clauses
- Fields on indicators enforce clauses
- ► Any clause which can be efficiently written using ∧, ∨, ⊕, ¬, and parenthesis can be implemented efficiently

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

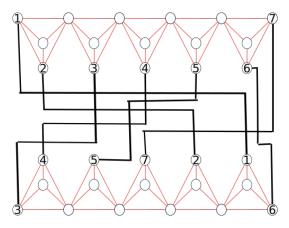
Does not require full connectivity

Example: Classical Decoding, Turbo code implementation



- Interleaved convolution code: apply strings of ⊕ of even length on bits (s₁ ⊕ s₂), (s₁ ⊕ s₂ ⊕ s₃ ⊕ s₄) ...
- ▶ odd length strings of \oplus applied to random permutation $(s_{p(1)}), (s_{p(1)} \oplus s_{p(2)} \oplus s_{p(3)}) \dots$
- approaches Shanon limit for large block length

Turbo code decoder using minor embedding

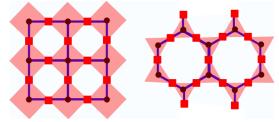


- Black lines \rightarrow embedding bonds
- red lines \rightarrow ancilla couplings
- note similarity to ideas presented in arXiv:1603.08554v2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Application: Particle Simulation

Higher dimensional analogue of 1-D domain walls using high locality operators, red squares \rightarrow spins, pink polyhedra \rightarrow couplers, circles \rightarrow particle sites, lines \rightarrow allowed hops



$$H_{particle} = -\frac{m}{2} \sum_{i} \prod_{j \in d_i} \sigma_j^z - \tau \sum_{i} \sigma_i^z - \Delta \sum_{i} \sigma_i^x$$

Can this Hamiltonian be realized perturbatively using our gadget?

Realizing particle simulation Hamiltonian perturbatively

Using our gadget for each coupler What works:

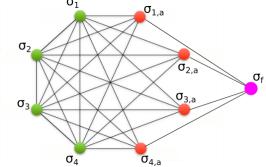
- All logical bit flips occur at 3rd order in perturbation theory (flip 2 ancillas plus bit)
- All transitions go through intermediate states with the same energy

• : bit flips (σ_i^{x}) realized perturbatively with no modifications What Doesn't:

► Second order fluctuations are not the same for every logical state → some energetically favored over others

I will show how to rectify this on next slide

Matching fluctuation strengths with additional ancillas



'fluctuation control' ancillas (f), coupled to ancillas

$$H_{fc} = \sum_{i} (J_{i,f}(-\sigma_{i,a}^{z} + \sigma_{i,a}^{z}\sigma_{f}^{z}) + |J_{i,f}|\sigma_{f}^{z}) + h_{f}^{0}\sigma_{f}^{z}$$

- $h_f^0 > 0$ no effect on Ising coupling
- $\{J_{i,f}\}$ tuned to control fluctuations
- more than 1 such ancilla can be added

Conclusions

- Alternate method for mapping problems based on max-SAT formalism
- Individual elements claimed together to realize any clause which can be written efficiently
- Example applications:
 - Classical message decoding: Turbo Code
 - Particle simulation: realize Hamiltonian perturabtively

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quick Plug for Some of my Other Work

Modernizing Quantum annealing using Local Search: arXiv:1606.06833

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?